

Geotechnical Investigation Report

2343 Eglinton Avenue West Toronto, Ontario

> Project No. 24-0022 December 18, 2024

Prepared For: 1764174 Ontario Inc. 3080 Dufferin Street Toronto, ON M6A 2S6 Prepared By: Groundwater Environmental Management Services Inc. 150 Rivermede Road, Unit 9 Concord, ON, L4K 3M8

Contents

1.0	Introduction and Background2
2.0	Fieldwork
3.0	Laboratory Tests
4.0	Site and Subsurface Conditions4
4.1	Site Description4
4.2	Surface Cover4
4.3	Fill Material4
4.4	Native Soil5
4.4	4.1 Clayey Sandy Silt (Till)
4.4	4.2 Sands and Silts
4.	4.3 Clayey Silt
4.5	Groundwater
5.0	Discussion and Recommendations
5.0 5.1	Discussion and Recommendations
5.0 5.1 5.2	Discussion and Recommendations
5.0 5.1 5.2 5.3	Discussion and Recommendations
5.0 5.1 5.2 5.3 5.4	Discussion and Recommendations
5.0 5.1 5.2 5.3 5.4 5.5	Discussion and Recommendations
5.0 5.1 5.2 5.3 5.4 5.5 5.6	Discussion and Recommendations
5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Discussion and Recommendations 8 Excavation 8 Groundwater Control 9 Reuse of On-Site Excavated Soil 9 Foundation Design 9 Basement Floor Slab 10 Lateral Earth Pressure 11 Shoring Design 12
5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Discussion and Recommendations8Excavation8Groundwater Control9Reuse of On-Site Excavated Soil9Foundation Design9Basement Floor Slab10Lateral Earth Pressure11Shoring Design12Pavement Design13
5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Discussion and Recommendations8Excavation8Groundwater Control9Reuse of On-Site Excavated Soil9Foundation Design9Basement Floor Slab10Lateral Earth Pressure11Shoring Design12Pavement Design13Earthquake Design Parameters14
5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0	Discussion and Recommendations8Excavation8Groundwater Control9Reuse of On-Site Excavated Soil9Foundation Design9Basement Floor Slab10Lateral Earth Pressure11Shoring Design12Pavement Design13Earthquake Design Parameters14Limitations and Review of Final Design and Construction15

List of Appendices

- Appendix A Borehole Location Plan
- Appendix B Borehole Log Sheets
- Appendix C Geotechnical Laboratory Testing
- Appendix D Pressuremeter Test Results

1.0 Introduction and Background

Groundwater Environmental Management Services Inc. (GEMS) has been retained by 1764174 Ontario Inc. (the Client) to carry out a geotechnical investigation for a high-rise development proposed at 2343 Eglinton Avenue West, Toronto (the Site). Authorization to proceed with this study was given by Mr. Brian Tafler of 1764174 Ontario Inc.

The original design concept for the proposed development consisted of demolishing the existing buildings at the Site and redeveloping the Site with mixed-use buildings ranging to 25-storeys above grade, constructed over an underground parking garage. The depth of the underground parking garage was not known at the time of preparing the Geotechnical Investiation scope of work, but is was assumed the parking garage would be two levels extending approximately 6 m below grade.

Based on the proposed development scheme, GEMS recommended that a total of five (5) boreholes be advanced across the site for general coverage extended to depths ranging from 20 to 40 meters below grade (mbg), with Pressuremeter (PMT) testing in one of the deep boreholes. It was anticipated that the proposed 25 storey building would be founded using spread and strip footings or a raft foundation that would be supported on the native soils at a shallow depth.

Following the completion of the drilling fieldwork, the height of the proposed buildings were revised to 12 and 43 storeys with a 6 storey podium separating the two buildings. The buildings would be constructed over two levels of underground parking garage, with the P2 floor slab set at Elevation 151.20 m; approximately 7 to 8 mbg.

Based on the loads that are anticipated to be applied by the 43 storey tower, it may now be necessary to support the tower on caisson foundations extending to bedrock. The depth to bedrock was not investigated during the initial drilling program, and accordingly deeper boreholes are likely to be required to be advanced at the Site to obtain information required for caisson foundations.

This report presents the findings of the geotechnical investigation undertaken for the original development proposal and recommendations for the design of the proposed development using the available information.

The geotechnical investigation was carried out in conjunction with the hydrogeological investigation, reported under separate cover.

This report presents the results of the investigation performed in accordance with the general terms of reference outlined above and is intended for the guidance of the owner and the design architects or engineers only. It is assumed that the design will be in accordance with the applicable building codes and standards.

2.0 Fieldwork

The fieldwork for this study was carried out during the period September 26 to October 11, 2023. It consisted of five (5) boreholes advanced by a drilling contractor commissioned by GEMS utilizing conventional drilling techniques. The boreholes are designated as MW1 through MW5 and were advanced to depths ranging between 20 and 40 m below ground surface (mbg).

All boreholes were instrumented with monitoring wells to facilitate field testing for the hydrogeological study. These wells were screened to depths ranging from 8 to 20 mbg.

The locations of the boreholes are shown on the Borehole Location Plan in Appendix A. It should be noted that Boreholes MW1 and MW2 were proposed to be drilled further north for site coverage, however their positions needed to be moved south due to the presence of critical utilities along Eglinton Avenue West to satisfy a minimum setback required by the utility company.

Standard penetration tests were carried out in the course of advancing the boreholes to take representative soil samples and to measure penetration index values (N-values) to characterize the condition of the various soil materials. The number of blows of the striking hammer required to drive the split spoon sampler through 300 mm depth increments was recorded and these are presented on the logs in Appendix B as penetration index values.

The subsurface soil information at the Site was complemented with the results of Pressuremeter (PMT) testing carried out in Borehole MW5 extending from approximately 3.5 to 40 mbg at 3 m depth intervals. The PMT is an in situ stress-strain test performed on the wall of a predrilled borehole using a cylindrical probe that is expanded radially. Based on the interpretation of the test data, an estimation of soil shear strength and deformation properties including elastic modulus, drained friction angle, as well as an interpretation of the engineering behaviour of the soil material under test are determined. The PMT results and interpreted data are enclosed with this report in Appendix D.

Groundwater level observations were made in the boreholes during their advancement and subsequently in the monitoring wells on August 29, September 10 and 27, October 9 and 23, and November 4, 2023.

The ground surface elevations at the locations of the boreholes were established utilizing a TopCon HiPer V GNSS positioning device.

The fieldwork for this project was carried out under the supervision of an experienced technician from this office who laid out the positions of the boreholes in the field; arranged locates of buried services; effected the drilling, sampling and in situ testing; observed groundwater conditions; and prepared field borehole log sheets.

3.0 Laboratory Tests

The soil samples recovered from the split spoon sampler were properly sealed, labelled and brought to our laboratory for detailed examination. They were visually classified and water content tests were conducted on all samples retained from Borehole MW1, MW3, and MW5. The results of the classification and water content tests are presented on the borehole log sheets in Appendix B.

Grain-size analyses were carried out on four (4) soil samples, and two (2) of the samples was subjected to Atterberg Limits test. The results of these tests are enclosed in Appendix C of this report.

4.0 Site and Subsurface Conditions

Full details of the subsurface and groundwater conditions at the site are given on the Borehole Log Sheets attached in Appendix B of this report.

The following paragraphs present a description of the site and a commentary on the engineering properties of the various soil materials contacted in the boreholes.

It should be noted that the boundaries of soil types indicated on the borehole logs are inferred from noncontinuous soil sampling and observations made during drilling. These boundaries are intended to reflect transition zones for the purpose of geotechnical design, and therefore, should not be construed as exact planes of geological change.

4.1 Site Description

The Site is located on the southwest corner of the intersection of Eglinton Avenue West and Caledonia Road in Toronto. It has an approximate area of 4,100 m² and is currently developed with a single storey commercial building, with one basement level underneath a portion of the building footprint. The building is operating as a Shoppers Drug Mart.

The Site is bounded by Eglinton Avenue West to the north with commercial buildings then residential homes beyond, Caledonia Road to the east with a residential homes beyond , residential homes to the south, and Gilbert avenue to the west with a parkette beyond . The Eglinton Crosstown LRT tunnel is located under Eglinton Avenue north of the Site. The tunnel is believed to be located approximately 15 mbg.

The ground surface topography of the site is relatively flat with a gentle downward slope from east to west. The ground surface elevations at the locations of the boreholes range between 159.14 at MW4 and 158.11 at MW2.

4.2 Surface Cover

Asphaltic concrete is present at the ground surface in all boreholes. It ranges in thickness from 70 mm to 75 mm.

4.3 Fill Material

Fill material is present below the asphaltic concrete in all boreholes. It consists of gravelly sand, silty sand with some clay pockets, and clayey silt with some sand and trace gravel. The fill extends to depths ranging from 0.2 mbg in MW2 and MW5 to 0.9 mbg in MW1.

The fill is brown and dark brown in colour and moist in appearance. The water content of the samples of fill obtained from Boreholes MW1, MW3 and MW5 are 14 and 23% by weight. SPT in the fill provided N-values ranging from 4 to 10 indicating a loose compactness condition or firm consistency.

4.4 Native Soil

The native soils present below the fill material at all borehole locations consist of sandy clayey silt glacial till deposit, underlain by sands and silts, further underlain by clayey silt.

4.4.1 Clayey Sandy Silt (Till)

Clayey sandy silt (till), with trace gravel is present in all boreholes below the fill materials. It extends to depths ranging from approximately 5.5 to 9.2 mbg.

The clayey sandy silt (till) is brown in colour and moist in apperance. The water content of samples of clayey sandy silt (till) obtained from Boreholes MW1, MW3, and MW5 range from 5 to 23% by weight.

SPT carried out in the clayey sandy silt (till) provided N-values ranging from 8 to over 100 blows for 300 mm of penetration indicating a firm to hard consistency: more typically being very stiff to hard.

Grain size analysis and Atterberg Limits test was carried out on one (1) sample of clayey sandy silt (till) obtained from Borehole MW5; Sample 4 at 2.4 m depth. The test results are enclosed in Appendix C as Figures C-1 and C-5 and reveal that the material consists of 47.4% silt, 32.2% sand, 15.0% clay, and 5.4% gravel, and possesses a liquid limit of 20.8 and a plastic limit of 15.2.

The soil classification, according to the plasticity chart on Figure C-5 in Appendix C is inorganic clay of low plasticity.

Based on the results of the grain size analysis, the Coefficient of Permeability (k) of the clayey sandy silt (till) is estimated to be less than 10^{-8} cm/sec, corresponding to very low relative permeability.

4.4.2 Sands and Silts

Sands and silts with varying compositions are present below the sandy clayey silt (till) in all boreholes extending to depths ranging from approximately 24.5 to 25.5 mbg. Boreholes MW2, MW3, and MW4 were terminated in the sands and silts at an approximate depth of 20 m.

The sand and silt materials consist of fine sand and silt, sand with trace to some silt, silt with some sand and trace clay, sand and silt with some clay and trace gravel, sand with some silt to silty, and fine sandy silt with trace clay and trace gravel with occasional thin layers of clayey silt.

The sands and silts are brown in colour and moist in appearance, becoming grey and wet at depths ranging from approximately 10.2 to 14.8 mbg. The water content of the samples of sand and silt obtained from Boreholes MW1, MW3, and MW5 range from 5 to 18% by weight.

SPT carried out in the sands and silts provided N-values ranging from 36 to more than 100 blows for 300 mm of penetration. Based on findings of SPT tests the compactness condition of the sands and silts ranges from dense to very dense; more typically being very dense.

Grain size analyses were carried out on three (3) samples of sands and silts obtained from Borehole MW1; Sample 18 at 21.5 m depth, Borehole MW2; Sample 9 at 9.2 m depth, and Borehole MW5; Sample 11 at 15.4 m depth. Atterberg Limits tests were conducted on the sample from Borehole MW1. The test results are enclosed in Appendix C as Figures C-2 through C-5 and are summarized in the following table.

Table 1. Re	sults of Grain Size	Analysis				
Borehole No.	Sample Depth (mbgs) and No.	Sample Description	Gravel %	Sand %	Silt %	Clay %
MW2	9.2, Sample 9	SAND and SILT some clay, trace gravel	7.6	36.1	38.3	18.0
MW5	15.2, Sample 11	fine SANDY SILT, trace clay	0.0	23.3	68.3	8.4
MW1	21.5, Sample 18	SILT, some sand, trace clay	0.0	14.6	80.2	5.2

Based on the results of the grain size analyses, the Coefficient of Permeability (k) of the sands and silts are estimated to range from 1.6×10^{-4} to 10^{-6} cm/sec, corresponding to medium relative permeability.

The Atterberg Limits test performed on Borehole MW1; Sample 18 revealed that the soil is not plastic.

4.4.3 Clayey Silt

Clayey silt with frequent layers of silt is present below the sands and silts in Boreholes MW1 and MW5. The clayey silt extends to the explored depth in both boreholes at 40 mbg.

The clayey silt is grey in colour and moist in apperance. The water content of samples of the layers of clayey silt obtained from Boreholes MW1 and MW5 range from 18 to 25% by weight.

SPT carried out in the layers of sands and silts provided N-values ranging from 24 to over 100 blows for 300 mm of penetration indicating a very stiff to hard consistency: more typically being hard.

4.5 Groundwater

Groundwater measurements made by GEMS in the monitoring wells installed in the boreholes during the period between August 29 and November 4, 2023 are summarized in the following table.

Table 2. Groundwater Levels

BH No.	Ground Surface Elevation (m)	Date	Groundwater Depth (mbg)	Groundwater Elevation (m)
		August 29, 2023	7.83	151.21
		September 10, 2023	Dry	-
N/I\N/1	159.04	September 27, 2023	7.82	151.22
101001	133.04	October 9, 2023	7.83	151.21
		October 23, 2023	7.84	151.20
		November 4, 2023	7.83	151.21
		August 29, 2023	6.54	151.58
		September 10, 2023	6.71	151.41
N/1N/2	158 13	September 27, 2023	6.79	151.33
101002	138.12	October 9, 2023	6.80	151.32
		October 23, 2023	6.86	151.26
		November 4, 2023	6.87	151.25
		August 29, 2023	6.59	152.10
		September 10, 2023	Dry	-
N 414/2	158.60	September 27, 2023	6.59	152.10
101 00 3	158.09	October 9, 2023	6.60	152.09
		October 23, 2023	6.61	152.08
		November 4, 2023	6.61	152.08
		August 29, 2023	13.38	145.76
		September 10, 2023	13.35	145.79
	150 14	September 27, 2023	-	-
101004	159.14	October 9, 2023	13.20	145.94
		October 23, 2023	13.31	145.83
		November 4, 2023	13.33	145.81
		August 29, 2023	6.97	151.24
		September 10, 2023	7.33	150.88
	150.21	September 27, 2023	7.72	150.49
101005	158.21	October 9, 2023	7.74	150.47
		October 23, 2023	7.73	150.48
		November 4, 2023	7.73	150.48

MW4 was not accessible on September 24, 2023, and accordingly no groundwater level could be measured.

It should be noted that groundwater levels are subject to seasonal fluctuations.

5.0 Discussion and Recommendations

The following discussions and recommendations are based on the factual data obtained from the boreholes advanced at the site by GEMS and are intended for use by the client and design architects and engineers only.

We understand that it is proposed to demolish the existing buildings at the Site and redevelop the Site with 12 and 43 storey buildings with a 6 storey podium separating the two buildings, constructed over two levels of underground parking garage which will extend to the property limits. The P2 floor slab Elevation will be 151.20 m; approximately 7 to 8 mbg.

Contractors bidding on this project or conducting work associated with this project should make their own interpretation of the factual data and/or carry out their own investigations.

5.1 Excavation

Based on the field results, excavations for the foundations are not expected to pose any unusual difficulty. Excavation of the soils at this site can be carried out with hydraulic excavators.

It should be noted that the native soils at this site include glacial deposits, non-sorted sediment and therefore may contain boulders. Provisions must be made in the excavation and foundation installation contracts for the removal of possible boulders.

All excavations must be carried out in accordance with the Occupational Health and Safety Act (OHSA). With respect to the OHSA, the fill materials are expected to conform to Type 3 soils. The Clayey Sandy Silt (till) and the sands and silts above the water table are expected to conform to Type 2 soils.

Temporary excavation side-walls in Type 3 soils should not exceed 1.0 horizontal to 1.0 vertical. Temporary excavation side-walls in Type 2 soils should not exceed a 1.2 m vertical wall at the excavation bottom then not exceed 1.0 horizontal to 1.0 vertical.

In the event very loose and/or soft soils are encountered at shallow depths or within zones of persistent seepage, it will be necessary to flatten the side slopes to achieve stable conditions.

Excavation side-slopes should not be unduly left exposed to inclement weather.

Where workers must enter excavations extending deeper than 1.2 m below grade, the excavation sidewalls must be suitably sloped and/or braced in accordance with the Occupational Health and Safety Act and Regulations for Construction Projects.

Given the proposed depth of basement, and the proximity to the property limits, it will be necessary to shore the basement perimeter excavation walls. Shoring recommendations are provided in Section 5.7 of this report.

5.2 Groundwater Control

Based on observations made during drilling of the boreholes, and close examination of the soil samples extracted from the boreholes, significant groundwater seepage is not expected within the anticipated depths of the excavation for the underground structure and foundations. Any groundwater that may seep into excavations is expected to be minimal and it will be possible to maintain the excavations functionally free of water by means of sump pumps situated at the base of excavations. Surface water should be directed away from open excavations.

Excavations extending into the wet sandy and silty soils may encounter moderate groundwater flows that may require active dewatering.

The Hydrogeological Assessment Report prepared by GEMS should be referred to for further recommendations for groundwater control, the anticipated dewatering volumes during construction and during the service life of the building, as well as for requirements for Environmental Activity and Sector Registry (EASR) or Permit to Take Water (PTTW).

5.3 Reuse of On-Site Excavated Soil

On-site excavated inorganic soils, and soils free of construction debris and other deleterious materials are considered suitable for reuse as backfill provided their water content is within 2% of their optimum water contents (OWC) as determined by Standard Proctor test, and the materials are effectively compacted with a heavy compactor.

While the quality of the on-site soils is considered suitable for backfilling; the moisture content of the soils and the lift thickness for compaction must be properly controlled during backfilling. Measured water content of the fill and native soils within the anticipated excavation depth range from approximately 7 to 23%, more typically being around 10% which is close to the OWC of the material.

On-site soils that are wetter than their OWC should be dried sufficiently prior to use as fill to achieve the specified degree of compaction.

5.4 Foundation Design

The proposed development will consist of a 12 and 43 storey buildings separated by a 6 storey podium constructed over 2 levels of underground parking garage. The floor slab of the lowest parking garage level will be situated at Elevation 151.2 m.

As long term dewatering is no longer permitted by the City, it will not be possible to utilize perimeter and sub-floor drainage systems, it will be necessary to waterproof the underground floor slab and walls and accordingly use a raft slab to resist the hydrostatic uplift forces. It is anticipated that the base of the raft foundation will be situated approximately 2.5 m below the lowest parking garage floor slab at about Elevation 148.5 m. It will be necessary to maintain the water table below the base of the excavation at all times during construction of the foundation.

Based on the findings of the boreholes, the soil at the proposed base of the raft will consist of very dense, moist sand and silt.

In order to determine the magnitude of settlement resulting from the stress applied to the soil by the raft foundation, PMT testing was carried out in Borehole MW5. A settlement analysis was carried out using the GEO5 software package utilizing the soil data obtained from the PMT tests. Based on the results of

the settlement analysis, settlements resulting from stresses of 350 and 550 kPa applied by the raft are estimated to be 25 and 50 mm, respectively. For the structural design of the raft foundation, an average modulus of subgrade reaction value of 12 MPa/m can be used.

If the raft foundation system does not satisfy the design criteria alone, a composite foundation system comprising raft and piles (known as a piled raft) can be considered. This system is comprised of conventional piles and a rigid raft which acts as a pile cap. The main advantage of the piled raft is, it can limit settlement, bending, and tilting of the foundation bodies to a tolerable scale for the serviceability of the building. It can also prevent the settlement gaps between the foundation elements of the 43 storey tower and the surrounding parking garage structure and the 22 storey building. Consideration should also be given to settlement induced by the raft foundation on adjacent structures, specially the Eglinton Crosstown LRT tunnel to the north. A piled raft will minimize the effect of settlement on adjacent structures.

It is anticipated that the piles (caissons) will require to be founded in the bedrock anticipated to be situated approximately 45 m below grade. Accordingly, it will be necessary to advance additional boreholes at the Site to determine the depth to bedrock as well as the quality and strength of the bedrock.

It is anticipated that caissons founded a minimum of 1.5 m into sound shale bedrock, can be designed based on end bearing resistance at Ultimate Limit States (ULS) of 7 to 10 MPa.

The caisson installation must be inspected by a qualified geotechnical engineer to ensure that the caissons are constructed in accordance with the design intent. The contractor must take into consideration the drilling method to be used through soft and water bearing soils (continuous liners, mud drilling, etc.) and the concreting technique for installing caissons in accordance with good construction practice.

Caissons should be advanced to the top of sound shale bedrock and confirmed by the Geotechnical Engineer based on field observations. The caisson should then be further advanced 1.5 m into the sound shale. The caisson hole base should be cleaned using the auger and observed and approved by the Geotechnical Engineer.

Concrete should be placed to a minimum thickness of 600 mm in the caisson hole and mixed with the auger. The concrete should then be extracted from the caisson hole and disposed. Concrete placement for the caisson foundation may then proceed.

In the event that more than 150 mm of water is present in the base of the hole, it will be necessary to place concrete using the tremie method to ensure proper placement of the concrete in water.

5.5 Basement Floor Slab

As a raft foundation will be implemented, the floor slab will likely have to be constructed over a 500 to 600 mm thick layer of granular material such as 19 mm clear stone placed directly over the raft foundation to permit placement of sub-floor drainage piping and other utility lines.

5.6 Lateral Earth Pressure

Parameters used in the determination of earth pressure acting on structures subject to unbalanced pressures are defined below.

Table 2. Soil Parameters

Parameter	Definition	Units
Φ'	Angle of internal friction	Degrees
γ	Bulk unit weight of soil	kN/m ³
Ка	Active earth pressure coefficient (Rankine)	Dimensionless
Ко	At-rest earth pressure coefficient (Rankine)	Dimensionless
Кр	Passive earth pressure coefficient (Rankine)	Dimensionless

The appropriate un-factored values for use in the design of structures subject to unbalanced earth pressures at this site are tabulated as follows:

Table 3. Soil Parameter Values					
Soil Description	Φ'	γ	Ка	Кр	Ко
Fill Material	28°	20.0	0.36	2.77	0.53
Very stiff to hard Clayey Sandy Silt Till	32°	21.0	0.31	3.25	0.47
Silty Sand, Sandy Silt, Sand, Silty Sand Till, Silt	34°	19.0	0.28	3.54	0.44

Notes:

1. Temporary and/or permanent surcharges at the ground surface should be considered in accordance with the applicable Soil Mechanics methods.

Walls or bracings subject to unbalanced earth pressures must be designed to resist a pressure that can be calculated based on the following formula:

$P = K (\gamma h + q)$

where P = lateral pressure in kPa acting at a depth h (m) below ground surface

- K = applicable lateral earth pressure coefficient (Use Ko for basement wall design)
- γ = bulk unit weight of backfill (kN/m3)
- h = height at any point along the interface (m)
- q = the complete surcharge loading (kPa)

This equation assumes that free-draining backfill and positive drainage is provided behind the basement walls.

Subsurface walls that are subject to unbalanced earth and hydrostatic pressures must be designed to resist a pressure that can be calculated based on the following formula:

$P = K (\gamma (h - h_w) + \gamma 'h_w + q] + \gamma_w h_w$

where P = lateral pressure in kPa acting at a depth h (m) below ground surface

K = applicable lateral earth pressure coefficient

H = height at any point along the interface (m)

h_w = depth below the groundwater level at point of interest (m)

 γ = bulk unit weight of backfill (kN/m³)

 γ' = the submerged unit weight (kN/m3) of exterior soil ($\gamma' = \gamma - \gamma w$)

Resistance to sliding of earth retaining structures is developed by friction between the base of the footing and the soil. This friction (R) depends on the normal load on the soil contact (N) and the frictional resistance of the soil (tan Φ') expressed as: R = N tan Φ' . This is an ultimate resistance value and does not contain a factor of safety.

5.7 Shoring Design

Given the proposed depth of the excavation, and that the basement walls of the proposed development will extend close to the property limits, it will not be possible to slope the banks of the excavation, and it will be necessary to shore the basement excavation walls.

The design of temporary shoring for the support of the excavation walls must account for the presence of structures and buried services on the adjacent properties, and the existing subsurface conditions at the site.

The lateral restraining force for the shoring system may be provided by employing either rakers or tieback anchors. The latter is favorable because they do not protrude into the excavations as is the case with rakers. The use of tieback anchors will depend on whether permission is obtained to extend the anchors to the required distance on to the neighboring properties.

Provisions should be made to install temporary liners for the excavation of the soldier pile holes. The shoring contractor must also provide construction method(s) to overcome any groundwater seepage into the pile holes during excavation and subsequent concreting of the piles to comply with good construction practice.

The shoring design should be based on the procedure detailed in the latest edition of the Canadian Foundation Engineering Manual.

The earth pressure coefficients applicable for the design of the shoring system are:

- = K_o the 'at rest' earth pressure coefficient, applicable where no movement in the retained soil can be permitted, such as the presence of buried services or foundations close to the wall, = 0.45
- = K_a the active pressure coefficient,

= 0.3 - where adjacent building footings or buried services fall outside an envelope formed by a 60° line drawn from the base of the excavation wall to the ground surface

= 0.25 - where adjacent building footings or buried services are outside an envelope formed by a 45° line drawn from the base of the excavation wall to the ground surface

The minimum depth of penetration (d) of soldier piles may be estimated from the following expression:

$R = NB \left(\frac{1}{2}\gamma d^2 K_p\right)$

where **R** = required toe resistance

 K_p = passive earth pressure coefficient

- N = factor according to three-dimensional effect around an isolated pile,
- **B** = diameter of concrete filled hole
- **d** = required penetration depth
- γ = bulk unit weight of soil

Raker footings should be designed in accordance with the design principles for shallow foundations subject to inclined loading. All raker footings should be located outside the zone of influence of the buried portion of soldier piles, and at no less than 1.5D from the piles, where D = Depth of penetration of the piles below the base of the excavation. No excavation should be made within two footing widths of the raker footings, on the side opposite the rakers.

Anchors extended into the sandy clayey silt till and silty and sandy soils may be designed based on soil/grout bond value of 50 kPa. This value depends on the anchor installation method and grouting procedures Gravity poured concrete can result in low bond values, while pressure grouted anchors will give higher values and produce a more satisfactory anchor.

It will be necessary to perform load tests on the tiebacks to confirm the bond stresses assumed in the design of anchors.

Movement of the shoring system is inevitable. Vertical movements will result from the vertical loads on the soldier piles resulting from the inclined tiebacks and inward horizontal movement will result from the earth and water pressures. The magnitude of this movement can be controlled by sound construction practices. The lateral and vertical movement of the shoring system must be monitored especially at locations in which settlement sensitive structures are present, to ensure that movements are kept within an acceptable range.

5.8 Pavement Design

It is anticipated that the majority of the pavement at the site will be situated on the parking garage roof slab. In this regard, the pavement may be comprised of a minimum of 75 mm thick layer of Granular 'A' topped with asphaltic concrete having a minimum thickness of 80 mm (40 mm HL8 and 40 mm HL3).

Pavement which will be supported by soil subgrade should comprise a minimum 300 mm compacted depth of OPSS Granular B Type I sub-base, followed by a minimum 150 mm compacted depth of Granular A base material, 50 mm of HL8 asphaltic concrete base course, and 40 mm of HL3 asphaltic concrete surface course.

The long-term performance of the proposed pavement structure is highly dependent upon the subgrade support conditions. Stringent construction control procedures should be maintained to ensure that uniform subgrade moisture and density conditions are achieved as much as is practical, and that the subgrade is not disturbed and weakened after it is exposed.

The subgrade must be compacted to at least 98% of the materials standard Proctor maximum dry density (SPMDD). The granular base and sub-base materials should be compacted to a minimum of 100% SPMDD.

The asphaltic concrete materials should be compacted to a minimum of 97% of the materials bulk relative Marshall density.

The gradation and physical properties of the asphaltic concrete and granular materials shall conform to the OPSS standards. The asphaltic concrete materials should be rolled and compacted in accordance with OPSS 310 requirements.

The critical section of pavement will be at the transition between the pavement on subgrade and the pavement above the garage roof slab. In order to alleviate the detrimental effects of dynamic loading / settlement / pavement depression in the backfill to the rigid garage roof structure, it is recommended that an approach type slab be constructed at the entrance/exit points, by extending the granular sub-base to greater depths along the exterior garage wall.

Control of surface water is a significant factor in achieving good pavement life. Grading adjacent to the pavement areas must be designed so that water is not allowed to pond adjacent to the outside edges of the pavement or curb. In addition, the need for adequate drainage cannot be over-emphasized.

5.9 Earthquake Design Parameters

The Ontario Building Code (2012) stipulates the methodology for earthquake design analysis, as set out in Subsection 4.1.8.7. The determination of the type of analysis is predicated on the importance of the structure, the spectral response acceleration and the site classification.

The parameters for determination of the Site Classification for Seismic Site Response are set out in Table 4.1.8.4.A of the Ontario Building Code (2012). The classification is based on the determination of the average shear wave velocity in the top 30 metres of the site stratigraphy, where shear wave velocity (vs) measurements have been taken. In the absence of such measurements, the classification is estimated on the basis of empirical analysis of undrained shear strength or penetration resistance. The applicable penetration resistance is that which has been corrected to a rod energy efficiency of 60% of the theoretical maximum or the (N60) value.

Based on the borehole information, the subsurface stratigraphy generally comprises very stiff to hard clayey sandy silt till followed by very dense non-cohesive soils, underlain by hard clayey silt. Accordingly the site designation for seismic analysis is Class C.

The site specific 5% damped spectral acceleration coefficients, and the peak ground acceleration factors are provided in the 2012 Ontario Building Code - Supplementary Standard SB-1, Table 1.2, location Toronto, Ontario.

6.0 Limitations and Review of Final Design and Construction

GEMS has prepared this report for our client and its agents exclusively. GEMS accepts no responsibility for any damages that may be suffered by third parties as a result of decisions or actions based on this report.

The findings and conclusions are site-specific and were developed in a manner consistent with that level of care and skill normally exercised by professionals currently practicing under similar conditions in the area. The report should not be used after that without GEMS review/approval.

The project has been conducted according to our instructions and work program. Additional conditions, and limitations on our liability are set forth in our work program/contract. No warranty, expressed or implied, is made.

The conclusions and recommendations in this report are based on information determined at the inspection locations. Soil and groundwater conditions between and beyond the test holes by differ from those encountered at the test hole locations, and conclusions may become apparent during construction which could not be detected or anticipated at the time of the soil investigation.

The design recommendations given in this report are applicable to the project described in the text, and then only if constructed substantially in accordance with details of alignmentand elevations stated in the report. Since all of the details of the design may not be known to us, in our analysis certain assumptions had to be made as set out in this report. The actual conditions may, however, vary from those assumed, in which case changes and modifications may be required to our recommendations.

We recommend that we be retained during the final design stage to review the design drawings and to verify that they area consistent with our recommendations or the assumptions made in our analysis. We recommend also that we be retained during construction to confirm that the subsurface conditions throughout the site do not deviate materially from those encountered in the test holes. In cases where these recommendations are not followed, the company's responsibility is limited to accurately interpreting the conditions encountered at the test hole locations.

The comments given in this report on potential construction problems and possible methods are intended for the guidance of the design engineers and architects, only. The number of inspection locations may not be sufficient to determine all the factors that may affect construction methods and costs. The contractors bidding on this project or undertaking the construction should, therefore, make their own interpretation of the factual information presented and draw their own conclusions as to how the subsurface conditions may affect their work.

7.0 Closing

We trust this information will meet your current requirements. Please do not hesitate to contact the undersigned should you have any questions or require additional information.

Yours truly,

Groundwater Environmental Management Services Inc.

Prepared By:

Kellen Campbell, C.Tech. Director of Geotechnical Services

Vic Nersesian, P.Eng. Principal Geotechnical Engineer

Appendix A

Figure 1 – Borehole Location Plan

N	8 226	6 76 2 22	P-10	Legend
	270	111 A E	Eglinte	Borehole
2380 M				Dewatering Source Area
2296			2315	
300	NeW Eginton Avew		1	-
Eglintou	A LINE SHOW	2 49 1 1		
	231		MW2	Cirit F
Edinton Ave TV	2363 NW1	MW3	A.B. 18	R. M
	the Real	a weat	MW5	
A date:	2 MW			
Scale: 1:1,000			500	Of Inde
401		Borehole Location Plan		
York	2343 E	Eglinton Avenue West, Toron	to	GEMS .
	Client: 1764174 Ontario Inc.	Project # 24-0022	Created by: G.Hogan	Groundwater Environmental Management Services
Scale: 1:250,000	Date Saved: 2024-12-12		Figure 1 of 1	

Appendix B

Borehole Log Sheets

	ENT:	1764174 Ontario Inc.		PRO	JEC	T N	0.: 2	24-0022	2			BC	R		NO. :	MW1
LOC		1: 2343 Eglinton Avenue West. Toronto		NOR	тни	NG ((m):	483887	1.57	EA	STI	NG	(m):	623858.02	8	ELEV. (m) 159.04
DRI	LLING	CONTRACTOR: Drilltech Drilling Ltd.		BOR	EHC		DIAN	IETER (cm): 10			v	/ELL	DIAMETER	(cm):	5
DRI	LLING	METHOD: Augering, Mud Rotary			-	-						Т	ΟΤΑ	L DEPTH OF	BORE	HOLE (m): 40.1
SOIL SYMBOL	DEPTH (m)	SOIL DESCRIPTION	ELEVATION (m)	SHEA 40 (Blc 20	R ST (kP 80 N-VAI ws/3 40	REN Pa) <u>120 -</u> LUE 300mi <u>60</u>	IGTH 160 m) 80	V CC PL 10	VATER ONTENT (%) W.C. LL 20 30 4	O SAMPI F NO	SAMPLE TVPE	SPT(N)	RECOVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS
	0	ASPHALTIC CONCRETE 75 mm FILL loose, moist, brown gravelly sand FILL loose, moist, brown silty sand, some clay pockets	_/ _ 159 ∫ _ _ 158.5	9				16		1		9	100	bentonite and riser		50 mm diameter monitoring well installed.
	1-	FILL stiff, moist, brown clayey silt, some sand trace gravel	- - - -	10				14		2		10	100			Monitoring well dry on September 10, 2023. Water level on
	1.5 -		- 157.5		42			11		3		42	30			September 27, 2023 at 7.82 mbg. Water level on October 9, 2023 at 7.83 mbg.
	2.5 -		- 156.5	24				12		4		24	100	D		Valer level on October 23, 2023 at 7.84 mbg. Water level on November 4, 2023 at 7.83 mbg.
	3-		- 			-	78	8		5		78	100	þ		
	3.5 -		- 155.5				10	0+8		6			+75			
	4.5 -	very stiff to hard	- 154.5	5										sand and		
	5-	moist, brown CLAYEY SANDY SILT trace gravel (TILL)	- - - - - - -		43			9		7		43	100	riser sand and screen		
	5.5 -	some oxidization	- - 153.5 -													
	6 - 6.5 -		- 153		5	3		g		8		53	100	D		
	7-		- 152													
	7.5 -		- 151.5		36			10				36	100			
	8-		- 							9					<u>–</u>	
	8.5 - - 9 -		- 150.5 - - - - 150													
	9.5 -	very dense, moist, brown fine SAND and SILT	- 149.5				82	14		10		82	2100	D		
	10 -		- - - - - 149													
		GEMC		L	OG	GED	<u> BY:</u>	AD		DR	ILL	NG	DAT	E: Septeml	ber 27	and 28, 2023
		JEN13.		F	REVI	IEW	ED B	Y: KC		PA	GE	10	F 4			

С	LIENT:	1764174 Ontario Inc.		PROJEC		BOREHOLE NO.							MW1						
	ROJECT	Proposed High-Rise Development). / 0	2007	1 57				<u> </u>	<u></u>	622959 02	•	ELEV (m) 150.04			
		CONTRACTOR: Drilltech Drilling Ltd		BOREHO): 40	5001	1.57 m)· 10		:45			n): =1 1		o (cm)· F	ELEV. (m) 159.04			
D	RILLING	METHOD: Augering, Mud Rotary		DOILEIRE				, inj. 10				тс			BORE	HOLE (m): 40.1			
	DEPTH (m)	SOIL DESCRIPTION	ELEVATION (m)	SHEAR ST ● (kP 40 80 ▲ N-VAI (Blows/3 20 40	RENG1 a) 1 <u>20 16</u> LUE 00mm) 60 80	тн 0	W CC PL 10 2	ATER NTENT (%) W.C. LL 0 30 40	D	SAMPLE NO.	SAMPLE TYPE	SPT(N)	RECOVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS			
	10.5 - 11 - 11.5 - 12 - 12.5 - 13.5 - 14 - 14.5 - 15.5 -	weight we	148.5 148 147.5 147 146.5 145.5 145 144.5 144.5 144.5		76	100+	14 13 16			11 12 13		00- 00- 76	100 100 50						
	15.5 - 16 - 17 - 17.5 - 18.5 - 19 - 19.5 - 20 -	very dense, wet, brown SAND trace to some silt very dense, wet, grey SILT some sand, trace clay	143.5 143 142.5 142 141.5 141.5 140.5 139.5 139	LOG	GED E	100+ 100+ 100+	1.4 1.6			15 16 17		00- 00-	-75 DATI	E: Septem	ber 27	and 28, 2023			
		JEMS.		LOGGED BY: AD DRILL REVIEWED BY: KC PAGE								DRILLING DATE: September 27 and 28, 2023 PAGE 2 OF 4							

CI	LIENT:	1764174 Ontario Inc.		PROJEC	CT NO.:	24-0	022			В	OR	E	HOLE	NO. :	MW1
		: Proposed High-Rise Development		NORTH	ING (m):	483	8871 57	,	FAS		- (m	. 63	23858 02	8	ELEV (m) 159.04
	RILLING	CONTRACTOR: Drilltech Drilling Ltd.		BOREH		METE	R (cm):	10	2/10		WE	,. 02 LL D		(cm): 5	5
DI	RILLING	METHOD: Augering, Mud Rotary		-	-		(*)	-			тот	AL I	DEPTH OF	BORE	HOLE (m): 40.1
SOIL SYMBOL	DEPTH (m)	SOIL DESCRIPTION	ELEVATION (m)	SHEAR S ● (kF 40 80 ▲ N-VA (Blows/3 20 40	TRENGTH Pa) <u>120 160</u> ALUE 300mm) 60 80	1	WATEF CONTEN (%) PL W.C. 0 20 30	R NT LL) 40	SAMPLE NO.	SAMPLE TYPE	SPT(N)	KECUVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS
	20.5 - 21 - 21.5 - 22 -		- 138.5 - 138 - 138 - 137.5 - 137.5 - 137		1	00+	18		18		00-7	'O			
	22.5 -		- - - - - 136.5												
	23-	SILT some sand clay	- 		1	00+ ·	2		19		00-7	5			
	23.5 -		- 135.5 - -												
	24.5 -		- 135 - - - - - 134.5		1	00+	18		20	\square	2015	-			
	25 -		- - - - - - - - - - - -						20	<u> </u>	JU+5	C			
	25.5-		133.5 - - - 133 -	31			20		21	;	31 1	00			
	26.5 - 27 -		- - 132.5 - - - - 132												
	27.5 -	dense to very dense and hard wet, grey frequent layers of	- - - - - - - -		1	00+	22		22		00-1	00			
	28-	SILT and CLAYEY SILT	- 131												
	29-		- 130.5 - - - - - 130 -		1	00+	25 22		23A 23B	H	00-7	5			
	29.5 -		- 129.5 												
	30 - 30.5 -	hard, moist, grey CLAYEY SILT	- 129 - 129 												
rr r	¥ - 0.0		28.5 LOGGED BY: AD					DRILLING DATE: September 27 and 28 2023							
		GEM2		REV	/IEWED E	BY: F	(C		PAG	E 3 (0F 4	<u>.</u> .	Copterm	201 21	

CL		1764174 Ontario Inc.		PR	OJEC	T NO).: 2	4-00)22				В	80	RE		NO. :	MW1
		2343 Edinton Avenue West, Toronto		NO	RTHI	NG (n	m)· 4	4838	3871	.57	F	-AS	TIN	Gí	n).	623858.02	8	ELEV (m) 159.04
DR		CONTRACTOR: Drilltech Drilling Ltd.		BOI	REHC		DIAM	ETE	R (ci	m): 10)			w	ELL	DIAMETER	(cm): 5	5
DR	ILLING	METHOD: Augering, Mud Rotary												тс	DTA	L DEPTH OF	BORE	HOLE (m): 40.1
SOIL SYMBOL	DEPTH (m)	SOIL DESCRIPTION	ELEVATION (m)	SHE, 40 (B 20	AR ST ● (kP; 80 N-VAI lows/3 40	RENG a) 1 <u>20 16</u> _UE 00mm 60 8	GTH 60 1) 30	1	WA CON (PL W 0 20	TER ITENT %) /.C. LL 30 4	-	SAMPLE NO.	SAMPLE TYPE	SPT(N)	RECOVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS
	31 -		- - - - - - - - - - - - - - - - - - -			62			20			24		62	100			
	31.5 -		- 															
	32 -		- 127				10	0+	1520			25A 25B	ŢĮ,	00-	100			
	32.5 -		- 126.5															
	33-		- 126															
	33.5 -		- 		44				19			26		44	70			
	34 -		- 125									20		44	70			
	34.5 -		- 															
	35 -		- 		36				18									
	35.5 -	hard and very stiff, moist grey CLAYEY SILT	- 	5								27		36	100			
	36 -		- 123															
	36.5 -		- - - 122.5		20													
	37 -		- - - 122		30				20			28		38	100			
	37.5 -		- 															
	38 -		- - - 121															
	38.5 -		- - - 120.5		4				21			29		24	100			
	39-		- 120															
	39.5		- - - 119.5															
	40-			30				20			30		30	100				
END OF BOREHOLE																		
\vdash			LOGGED BY: AD DRI					1 11	IC 1	⊥∟	E. Sentem	her 27	and 28, 2023					
		UEMS.		F	REVIEWED BY: KC PAGE 4						AGE 4 OF 4							

	ENT:	1764174 Ontario Inc.		PR	OJE	CT N	NO.:	24-	0022	2			E	80	RE		NO. :	MW2
		v: 2343 Eglinton Avenue West, Toronto		NC		HING	; (m)) 48	3888	3.58		FAS	TIN	G	m).	623925.98		FLEV (m) 158.12
DRI	LLING	CONTRACTOR: Drilltech Drilling Ltd.		во	REF	HOLE	E DI	AMET	ER (cm):	10			W	ELL	DIAMETER	(cm):	5
DRI	LLING	METHOD: Augering, Mud Rotary								,				тс	ОТА	L DEPTH OF	BORE	EHOLE (m): 20.0
SOIL SYMBOL	DEPTH (m)	SOIL DESCRIPTION	ELEVATION (m)	SHE 40 (E 20	EAR S (k 0 80 N-V Blows 0 40	STRE (Pa) (120 (ALUE (300r () 60	NGT 0 160 E mm) 80	ГН)	0 CC PL 10 2	VATER ONTEN (%) W.C.	R NT LL 0 40	SAMPLE NO.	SAMPLE TYPE	SPT(N)	RECOVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS
	0	ASPHALTIC CONCRETE 70 mm FILL loose, moist, brown gravelly sand	= 158 157.5	5								1		5	30	bentonite and riser		50 mm diameter monitoring well installed.
	1-		- - - - - - - - - - - - - - - - - - -	16								2		16	100			Water level on August 29, 2023 at 6.54 mbg. Water level on September 10, 2023 at 6.71 mbg.
	1.5 - 2 -		- - 156.5 - - - - 156	2	27							3		27	100			Water level on September 27, 2023 at 6.79 mbg. Water level on October 9, 2023 at 6.80 mbg.
	2.5 -		- 155.5		4	3						4		43	65			Water level on October 23, 2023 at 6.86 mbg. Water level on November 4, 2023 at 6.87 mbg.
	3-		- - - - -				77					5		77	100			
	4-		- 154.5 - -															
	4.5 -	very stiff to hard moist, brown CLAYEY SANDY SILT	- 154 - -															
	5-	(TILL)	- 153.5 - - - 153					100+				6		00-	100	sand and riser sand and screen		
	5.5 -		- 152.5															
	6 -		- - - - 152					100+				7		00-	400			
	6.5 -		- 151.5 -					Ī										
	7-		- 															
	7.5 -		- 					100+				8		00-	-75			
	8-		- - - -															
CRE I	8.5																	
	9-	very dense, moist, brown SAND and SILT	- - -					100+				9		00-	-75			
	9.0 - - - -	some clay, trace gravel	- 148.5 - -															
	-		- 148	Ц														
		GEMS		LO RE	GGE VIEV	ED B	BY: A	D KC			DRII PAG	LLIN GE 1		DAT 2	E: October	10-11	, 2023	

C		1764174 Ontario Inc.		PRO	JECT	⁻ NO.:	24	-0022				E	80	RE	EHOLE I	NO. :	MW2
		v: 2343 Eglinton Avenue West, Toronto		NOR	THIN	IG (m)	: 48	33888	3.58	;	EAS		G (I	m):	623925.98		ELEV. (m) 158.12
D	RILLING	CONTRACTOR: Drilltech Drilling Ltd.		BOR	EHOI	LE DI	AME	TER (cm):	10			W	ÉLL	DIAMETER	(cm): {	5
D	RILLING	METHOD: Augering, Mud Rotary							,				т	DTA	L DEPTH OF	BORE	HOLE (m): 20.0
SOIL SYMBOL	DEPTH (m)	SOIL DESCRIPTION	ELEVATION (m)	SHEAI 40 (Blo 20	R STR (kPa 80 12 I-VAL ws/30 40 6	RENGT) 20 160 UE 0mm) 60 80	н)	W CO PL <u>10 2</u>	VATER NTEN (%) W.C. 0 30	R NT LL 0 40	SAMPLE NO.	SAMPLE TYPE	SPT(N)	RECOVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS
	10.5 - 11 -		- - - - - - - - - - - - - - - - - - -				100-	F			10		00	400			
	11.5 - 12 -	very dense, wet, brown SAND and SILT some clay, trace gravel	- - 146.5 - - - - 146														
	12.5 -		- - - - - - - - - - - - - - - - - - -		43						11		43	75			
	13 -		- 														
	14-		- 144.5 - - - - 144				100-	F			12		00	-75			
	14.5 -		- - - 143.5														
	15 - 15.5 -		- - 143 - -				100-	F			13].	00-	-60			
	16-		- 142.3 - - - - 142														
	16.5 -	very dense, wet, grey SILT and fine SAND	- - - 141.5 - -				100-	F			14		00-	-75			
	17.5 -		- 141 - - - - - 140.5														
	18-		- - - - 140				100-										
	18.5 -		- - - - - -				Î				15		00	100			
	19 – 19.5 –		- - 139 - - - 130														
	-		-				100	+			40			100			
		END OF BOREHOLE	-				Ĵ										
	·	CENT	LOGGED BY: AD D							DRI		IG I	DAT	E: October	10-11	, 2023	
		JEIVI 3.	F	REVIE	WED	BY	кс			DRILLING DATE: October 10-11, 2023 PAGE 2 OF 2							

CL	ENT:	1764174 Ontario Inc.	PROJECT NO.: 24-0022						BOREHOLE NO. : MW3								
					этні	NG (m	<u>م ، (م</u>	8388	67 58	2	FAS		<u> </u>	m).	623800 25		ELEV/ (m) 158.69
		CONTRACTOR: Drilltech Drilling Ltd		BOF	REHO			TFR	(cm) [.]	<u> </u>	LAG	1111	w		DIAMETER	(cm):	5
	ILLING	METHOD: Augering, Mud Rotary		801					(011).	10			т			BORE	EHOLE (m): 20.0
SOIL SYMBOL	DEPTH (m)	SOIL DESCRIPTION	ELEVATION (m)	SHE/ 40 (BI 20	AR ST (kP <u>80</u> N-VA ows/3 40	RENG 'a) 120 16 LUE 800mm) 60 80	0 0 0	C PL 10	WATE ONTE (%) W.C. 20 3	R NT LL 0 40	SAMPLE NO.	SAMPLE TYPE	SPT(N)	RECOVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS
	0	ASPHALTIC CONCRETE 70 mm FILL very loose, moist, brown gravelly sand FILL very loost, moist dark brown and brown sandy silt, some gravel	- - - - - - - - - - - - - - - - - - -	4					23		1		4	30	bentonite and riser		50 mm diameter monitoring well installed. Water level on August
	1 - 1.5 -	firm hard	- 	8	38			9			2		8	100			29, 2023 at 6.59 mbg. Monitoring well dry on September 10, 2023 Water level on September 27, 2023 at 6.59 mbg.
	2-		- - - - - - 156.5		44			11									9, 2023 at 6.60 mbg. Water level on October 23, 2023 at 6.61 mbg. Water level on
	2.5	moist, brown	- 								4		44	65			November 4, 2023 at 6.61 mbg.
	3.5 -	trace gravel (TILL)	- 155.5 - - - - 155				100)+7 			5		00-	100			
	4 -		- - - - - - - - - - - - - - - - - - -														
	4.5 -		- - - - - -				100	+8			6		00-	400	sand and riser sand and		
	5.5 -		- 												3018611		
	6-		- - - - - - - - - - - - - - - - - - -				100	5			7		00-	400			
	6.5 - - 7 -		- 														
	7.5-	very dense moist brown	- 151.5 - - - - 151		29			10									
	8-	SAND some silt to silty	- - - 150.5								8		38	75			
	8.5 -		- - - - -														
	9.5 -		- 				100	+ 1	5		9		00-	-75			
	10 -		- 149 - - - 148.5														
				LOGGED BY: AD D									IG [DAT	E: October	2, 202	23
		GEIVI3.	REVIEWED BY: KC							PAG	E 1	OF	2				

CI	LIENT:	1764174 Ontario Inc.		PROJECT NO.: 24-0022									BOREHOLE NO. : MW3								
	CATIO	N: 2343 Eglinton Avenue West, Toronto		NOR	THING	G (m):	48	3886	7.58	E	AST	INC	G (n	n):	623890.25		ELEV. (m) 158.69				
D	RILLING	CONTRACTOR: Drilltech Drilling Ltd.		BORE	HOL	E DIA	ME	FER (d	m): 10	1			ŴE	ELL	DIAMETER	(cm): 5	5				
D	RILLING	METHOD: Augering, Mud Rotary											то	TAI	L DEPTH OF	BORE	HOLE (m): 20.0				
SOIL SYMBOL	DEPTH (m)	SOIL DESCRIPTION	ELEVATION (m)	SHEAF	R STRE (kPa) 30 12 -VALU ws/300 40 60	ENGTH 20 160 JE 0mm) 0 80	1	W CO PL \ <u>10 20</u>	ATER NTENT (%) N.C. LL) <u>30 40</u>)	SAMPLE NO.	SAMPLE TYPE	SPT(N)	RECOVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS				
	10.5 - 11 -	vorumeist	- - - - - - - - - - - - - - - - - - -			1	00+	11			10		00-	00							
	11.5 - 12 -	wet	- - 147 - - - - 146.5																		
	12.5 -		- - - - - - - -		43			12			11		43	75							
	13.5 -		- - 145.5 - - - - - 145																		
	14-												90	75							
	14.5 - 15 -	dense to very dense, brown SAND	- 144 - 144																		
	15.5 -	some silt to silty	- 143				00+	12			13		00-	60							
	16 - 16.5 -		- 																		
	17-		- 142 			1	00+	14			14		00-	75							
	17.5 -		- - - 141																		
	18 - 18.5 -		- - 140.5			1	00+	14			15	П	00-	00							
	19-		- 140 - - - - 139.5																		
	19.5 -		- - - 139 -			1	00+	12			16		00+	00							
		END OF BOREHOLE																			
$\left[\right]$		CENAC		L	OGGI	ED BY	′: A	D		D	RILI	LIN	G D	AT	E: October	2, 202	23				
		GEN13.	R	BY:	кС		PAGE 2 OF 2														

	ENT:	1764174 Ontario Inc.		PR	OJEC	CT N	10.: 2	24-00)22			В	80	RE	HOLE N	0. :	MW4
LOC		v: 2343 Eglinton Avenue West. Toronto		NO	RTH	ING	(m):	4838	851.17	,	EAS	TIN	Gí	m):	623864.82		ELEV. (m) 159.14
DR	LLING	CONTRACTOR: Drilltech Drilling Ltd.		во	REH	OLE	DIAN	METE	R (cm):	10			w	ELL	DIAMETER (cm): {	5
DR	LLING	METHOD: Augering, Mud Rotary							()				тс	ОТА	L DEPTH OF	BORE	EHOLE (m): 20.0
SOIL SYMBOL	DEPTH (m)	SOIL DESCRIPTION	ELEVATION (m)	SHE 40 (B 20	AR S (kF 80 N-VA Blows/:	TREN Pa) 120 ALUE 300m	NGTH 160 im)	F	WATER CONTEN (%) PL W.C.	NT LL	SAMPLE NO.	SAMPLE TYPE	SPT(N)	RECOVERY (%)	VELL NSTALLATION VOTES	VELL SCHEMATIC	REMARKS
	0 -	ASPHALTIC CONCRETE 70 mm FILL loose, moist, brown gravelly sand FILL, loose, moist, dark brown and black silty sand, some clay	/ 159 - - - 158.5	7			80				1A 1B		7	30	bentonite and riser		50 mm diameter monitoring well installed.
	1	FILL, loose, moist, brown silty sand stiff, moist, brown CLAYEY SANDY SILT trace gravel	158	14							2		14	100			Water level on August 29, 2023 at 13.38 mbg. Water level on September 10, 2023 at 13.35 mbg.
	1.5 -	(TILL) some oxidization dense, moist, brown	- - 157.5 		41						3A 3B		41	100			Monitoring well inaccessible on September Water level on October
	2.5	tine SAND, trace slit	- 157 - - - - - 156.5		36						4		36	65			9, 2023 at 13.20 mbg. Water level on October 23, 2023 at 13.31 mbg. Water level on November 4, 2023 at
	3-		- - - - 156		43						5		43	100			13.33 mbg.
	3.5 -		- - - 155.5														
	4 -	hard, moist, brown SANDY CLAYEY SILT	- - - 155 -			7	74				6		74	100			
	4.5 -	(TILL) some oxidization	- 			7	0				7		70	100			
	5		- 														
	5.5 -		- - 153.5 -														
	6.5		- - - - -			55					8		55	100			
	7-		- 152.5														
	7.5 -		- 152 - -														
	8-		- 151.5				86				9		86	75			
	8.5 -	very dense, moist, brown	- 150 5														
	9-	ine SAND and SILI	- 150									-11-					
	9.5 -		- - - - 149.5								10		00-	75			
	10-		- - - 149														
		CERAC		LOGGED BY: AD							DRII		IG [DAT	E: Septemb	er 26	, 2023
		JENIJ.		REV	/IEW	/ED E	3Y: K	C		PAG	6E 1	OF	2				

С		1764174 Ontario Inc.		PROJECT NO.: 24-0022							BOREHOLE NO. : MW4							
		N: 2343 Ealinton Avenue West, Toronto		NORT	HING (m):	483885	51.17	EAS	STIN	G (r	n):	623864.82		ELEV. (m) 159.14				
D	RILLING	CONTRACTOR: Drilltech Drilling Ltd.		BORE	HOLE DIA	METER (cm): 10			W	ELL	DIAMETER	(cm): {	5				
D	RILLING	METHOD: Augering, Mud Rotary					,			тс	ΤΑΙ	L DEPTH OF	BORE	HOLE (m): 20.0				
SOIL SYMBOL	DEPTH (m)	SOIL DESCRIPTION	ELEVATION (m)	SHEAR 40 8 ▲ N- (Blow 20 4	STRENGTH (kPa) 0 120 160 VALUE vs/300mm) 0 60 80	H W CC	VATER ONTENT (%) W.C. LL 20 30 40	SAMPLE NO.	SAMPLE TYPE	SPT(N)	RECOVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS				
	10.5 - 11 - 11.5 - 12 -		- 148.5 - 148 - 147.5 - 147.5		1	00+		11		100-	100							
	12.5 - 13 -		- - - - - - - - - - - - - - - - - - -					12		00-	-75							
	13.5 - 14 -		145.5 100+ 145 145 145										-					
	15.5 - 16 -	very dense, brown fine SAND and SILT	Dist - 144.5 144.5 - 144 - 144 		1	00+		14	<i>`</i>	00-	-60							
	16.5 - 17 - 17 -		- 143 - 142.5 - 142		1	00+		15		00-	-75	sand and riser sand and screen						
	18 - 18.5 -		- 141.5 - - - - - - - - - - - - - - - - - - -		1	00+		16		00-	100							
	19 - 19.5 -		- - 140 - - - 139.5			00+		17		00-	100							
		END OF BOREHOLE	-															
		GEMS.	LC RI	DGGED BY	': AD BY: KC		DRI PAC	LLIN GE 2		ОАТІ 2	E: Septemb	oer 26	, 2023					

		1764174 Ontario Inc.		PROJECT NO.: 24-0022								BOREHOLE NO. : MW5								
		v: 2343 Edinton Avenue West Toronto		NC	RTH		G (n	n). Y	483	886	0.0	3	TF		TIN	Gú	m).	623930.09		ELEV (m) 158 21
		CONTRACTOR: Drilltech Drilling Ltd		BC					400 1616	=R (cm) [,]	· 10	1-	./.0		w 0	FI I		(cm):	5
DRI		METHOD: Augering, Mud Rotary		1						(тс			BORE	EHOLE (m): 40.1
SOIL SYMBOL	DEPTH (m)	SOIL DESCRIPTION	ELEVATION (m)	SHE 4((E 2)	EAR \$ (H 0 80 N-V Blows 0 40	STR kPa)) 12 /ALU s/30() 6(ENG 20 16 JE 0mm 0 8	50) 0	1	W CC PL 0 2	/ATE NTE (%) W.C	ER ENT 5. LL 30 40)	SAMPLE NO.	SAMPLE TYPE	SPT(N)	RECOVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS
	0	ASPHALTIC CONCRETE 75 mm FILL loose, moist, brown gravelly sand	158	9 ▲						17				1		9	100	bentonite and riser		50 mm diameter monitoring well installed.
	1-		- 157.8 - - - - 157	10							23			2		10	100			Water level on August 29, 2023 at 6.97 mbg. Water level on September 10, 2023 at
	1.5 -		- - - - - - - -		4	2			1	1				3		42	100			Water level on September 27, 2023 at 7.72 mbg. Water level on October
	2.5 -		- - 156 - - - - - 155.5	2	24				5	⊢	4			4		24	100			9, 2023 at 7.74 mbg. Water level on October 23, 2023 at 7.73 mbg. Water level on November 4, 2023 at
	3-		- - - - 155				7	В	7					5		78	100			7.73 mbg.
	3.5		- - 154.{ -											P1						
	4.5 -	moist, brown CLAYEY SANDY SILT	- 154					10	0+8					6		00	100	sand and		
	5 -	trace gravel (TILL)	- 153													00-	100	sand and screen		
	5.5		- 																	
	6.5 -		- - 152		4	3			g					7		43	100			
	7-		- 151.											P2						
	7.5 -		- 150.			53			7					8		53	100			
	8-		- - - 150																	
	8.5 - 9 -		- 149.5 																	
989 	9.5 -	verv dense, moist, brown	149																	
	10 -	SILT and fine SAND	- 148. - -											P3						
		GEMC			LO	GG	ED	BY:	AD)			D	RIL	LIN	IG	DAT	E: October	4-6, 2	2023
		JENIJ.		RE	VIE	WE	DВ	Y: ł	<c< td=""><td></td><td></td><td>Р</td><td>AG</td><td>E 1</td><td>OF</td><td>4</td><td></td><td></td><td></td></c<>			Р	AG	E 1	OF	4				

CL	IENT:	1764174 Ontario Inc.		PF	PROJECT NO.: 24-0022								В	BOREHOLE NO. : MW5							
		 Proposed High-Rise Development 2343 Edinton Avenue West, Toronto 		NC				483	3886	0.03	F		TIN	Gú	n).	623930.09		ELEV (m) 158 21			
DF		CONTRACTOR: Drilltech Drilling Ltd.		BC		HOL	E DIA	MET	ER ((cm): 10)	_/ (0		w 0	ELL	DIAMETER	(cm): 5	5			
DF	RILLING	METHOD: Augering, Mud Rotary							(,,. · · ·	<u> </u>			тс		L DEPTH OF	BORE	HOLE (m): 40.1			
SOIL SYMBOL	DEPTH (m)	SOIL DESCRIPTION	ELEVATION (m)	SHI 4 (EAR S (k 0 80 N-V Blows 0 40	STRE (Pa) (ALU (ALU (300) (60)	ENGT⊢ <u>0 160</u> JE)mm) 0 80	1	W CO PL 10 2	ATER NTENT (%) <i>N</i> .C. LL 0 30 4	- 40	SAMPLE NO.	SAMPLE TYPE	SPT(N)	RECOVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS			
	10.5 11- 11.5 12- 12.5 12.5	very dense, moist, brown SILT and fine SAND	- 147.5 - 147.5 - 147.5 - 146.5 - 146.5 - 145.5		36 ▲		82		13 1			9		36 82	100						
	13.5 - - - 14 -		- 145 - - - - - - - - -																		
	14.5 - - - 15 -		- 144									P4									
	15.5 - - - 16 -		- 142.5				1	00+	14			11		00-	100						
	16.5 - - - 17 -	very dense, wet, grey fine SANDY SILT	- - - 141.5 - -																		
	17.5 -	trace clay, trace gravel occasional thin layers of clayey silt	- 141 									P5									
	18 - - - - - - - - - - - - - - - - - - -		- 				1	00+	2	1		12		00-	400						
	19-		- 139.5 - - - - - 139																		
	19.5 -		- - - - - - - - -				76		13			13		76	100						
	-		- 138 -																		
		GEMS	,		LO	GGE	ED BY	/: Al						IG [DAT	E: October	4-6, 2	023			
				RE'	VIE	WED	BA:	ĸС			AG	E 2	UF	4							

CL		1764174 Ontario Inc.		PR	PROJECT NO.: 24-0022									RE		NO. :	MW5
		v: 2343 Edinton Avenue West, Toronto		NO	RTHIN	G (m) [.]	483	3886	0.03		FAS	TIN	G (n	n).	623930.09		ELEV (m) 158.21
DF	RILLING	CONTRACTOR: Drilltech Drilling Ltd.		BO	REHO	LE DIA	MET	ER (c	cm):	10			WE		DIAMETER	(cm): 5	5
DF	RILLING	METHOD: Augering, Mud Rotary							,	-			тс	TAI	L DEPTH OF	BORE	HOLE (m): 40.1
SOIL SYMBOL	DEPTH (m)	SOIL DESCRIPTION	ELEVATION (m)	SHE 40 (B 20	AR STR ● (kPa 80 12 N-VAL lows/30 40 6	RENGTH) 20 160 UE 0mm) 60 80	-	W CO PL \ 10 20	ATER NTEN (%) <i>N</i> .C. 0 <u>30</u>	T LL 40	SAMPLE NO.	SAMPLE TYPE	SPT(N)	RECOVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS
	20.5 - 21 - 21.5 - 22.5 - 22.5 - 22.5 - 23 -	very dense, wet, grey fine SANDY SILT trace clay, trace gravel occasional thin layers of clayey silt	- 137.5 - 137.5 - 136.5 - 136.5 - 135.5			1	100+	14			P6		00 .'	100			
	23.5-		- - 135														
	20.0		- - 134.5 -														
	24.5 -		- 														
	24.0		 133.5 														
	25.5 -		- 133														
	26-		- 132.5 - - - - 132			1	100+	2	1		15		00-	100			
	26.5 -		- 131 5														
	- 27 - -	hard, moist, grey	- 131														
	27.5 -	CLAYEY SILT frequent thin layers of silt	- - - 130.5														
	28-		- - - - 130								P7						
	28.5		- - 														
	29-		- - - 129				100+		23		16		00-	100			
	29.5 -		- - - 128.5														
	30 - 30.5 -	hard, moist, grey CLAYEY SILT	- 128														
ſ	4 4		-	• †			γ· ΔΓ	י י ר					 G		F. October	4-6 2	023
		U E IVI S.	F	REV/IE		BY.	KC:			PAG	F 3	OF	4		. 0, 2		
L						<u> </u>					- 5	51					

CL		1764174 Ontario Inc.		PROJ	IECT N	D.: 2	4-0022	2	BOREHOLE NO. : MW5								
		 Proposed High-Rise Development 2343 Edinton Avenue West Toronto 		NOR		m). 4	183886	50.03	FA	ST	ING		n).	623930.09		ELEV (m) 158.21	
		CONTRACTOR: Drilltech Drilling Ltd.		BORE	EHOLE	DIAM	ETER	(cm): 10	1 = /			WE		DIAMETER	(cm): 5	5	
DF	RILLING	METHOD: Augering, Mud Rotary						()				то	TAI	L DEPTH OF	BORE	:HOLE (m): 40.1	
SOIL SYMBOL	DEPTH (m)	SOIL DESCRIPTION	ELEVATION (m)	40 a 40 a A N (Blov 20 a	R STREN (kPa) 30 120 -VALUE vs/300mi 40 60	GTH 1 <u>60</u> n) <u>80</u>	V C(PL 10	VATER DNTENT (%) W.C. LL 20 30 40		CAMPICE NO.	SAMPLE IYPE	SPT(N)	RECOVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS	
	- 		- 127.5 - 127			10)+ 1	8	1	7		-0C	00				
	31.5		- 126.5														
	32-		- 126	26													
	32.5		- 125.5						Ρ	8							
	- 33 -		- 125														
	34 -		- 124.5			10	0+ 2	20	1	8		20-	00				
	34.5 -		- 124														
	35 -		- 123.5														
	35.5	hard, moist, grey CLAYEY SILT	- 123														
	36-																
	36.5		- 122														
	37 -		- 121.5			10	0+	24	1	9	10	-0C	00				
	37.5		- 121														
	38-		- 120														
	38.5 -		- 119.5														
	39-		- 119						Þ	10							
	39.5 -		- 118.5			10)+	22									
₩¥	40 -	-							2	۷		JU#	00				
		END OF BOREHOLE															
		CENC		L	OGGED	BY:	AD		DF	RILL	INC	G D	ATI	E: October	4-6, 2	023	
		LEIVI D.	R	EVIEW	ED B	r: KC		PAGE 4 OF 4									

Appendix C

Geotechnical Laboratory Testing

Tested By: <u>OAM</u> OAR

Appendix D

Pressuremeter Test Results

Project No. IDG 230749

In-Situ Pressuremeter Testing 2343 Eglinton Avenue West, Toronto, Ontario Borehole No. MW-05-PMT Revised on November 7th, 2023

Prepared for:

Kellen Campbell, C.Tech. Gem Services Inc. 9-150 Rivermede Road Concord, Ontario M4K 3M8

In-Depth Geotechnical Inc.

20 Ravenscliffe Avenue Hamilton, Ontario L8P 3M4 Phone: (905) 541 9937 Fax: (877) 624 0140

Table of Contents

 Introduction Field Testing Problem Pressuremeter - Closure 	ocedures Fest Results	1 2 3 8
Appendix One	Pressuremeter Results – Graphic Data	One-1
Appendix Two	Pressuremeter Data Interpretation	Two-1

Appendix ThreeCalibration DataThree-1

1. Introduction

In-Depth Geotechnical Inc. was retained by GEM Services Inc. to conduct Pressuremeter testing in relation to their Geotechnical Investigation for the 2343 Eglinton Avenue West site, in Toronto, Ontario.

This report presents the results of pressuremeter testing (PMT) carried out at one borehole location with the purpose of evaluating specific parameters related to a) shear strength; and b) deformation properties of the encountered soils.

This report includes data obtained by use of a pre-bored pressuremeter system. Inferred characteristics of the data are also presented including initial contact pressure, limit pressure, secant deformation modulus values during loading, unloading and reloading cycles, and yield pressure if and when justified by the data. Multiple methods are available for interpretation of this data to estimate engineering properties of soils but such methods are not discussed or included in this report except for the characteristics of the data plots as described above.

2. Field Testing Procedures

Pressuremeter testing was performed at one borehole location, located on 250 Front St. East, Toronto, as follows:

Borehole	Number of Tests	Ground Elevation	Water Elevation	Maximum Depth
		(masl)	(masl)	(m)
MW-05-PMT	5	158.21	145.51	40

Field work was completed on October 5 and 6, 2023.

Drilling procedures were undertaken by Drill Tech Contractor. The borehole was advanced using mud rotary open hole drilling technique, using a track-mounted Diedrich D 50 rig. This borehole was dedicated to PMT as well as SPT testing.

HWP casing (4 inch ID) was installed to a depth of about 3.0 m below the ground surface to prevent soil collapse on the upper part of the boring (collar).

The test sections of the boring were drilled with a tricone. The bit was advanced using continuous circulation of drilling mud to flush soil cuttings, producing a controlled diameter hole for the pressuremeter probe. A positive water head was kept inside the surface casing throughout drilling and in-situ testing procedures. In general, the drilling fluid remained at the top of casing.

Pre-boring pressuremeter testing was completed using a TEXAM unit. The testing procedure was in general accordance with Procedure B, volume-controlled loading, as outlined in the ASTM D 4719-00 Standard Test Method for Pre-bored Pressuremeter Testing of Soils. The testing equipment was calibrated for pressure and volume losses as indicated in the above-mentioned standard. The Records of Calibration for the PMT probes utilized in this job are attached on Appendix Three. The control unit was de-aired prior to every test. Also, checks were completed to ensure that the probe, tubing, and control unit assembly were fully saturated, and that the probe membrane was leakage-free at high pressures. Two readings were taken for each volume step, namely for time delays of 15, and 30 seconds.

Test procedures also included completion of up to two unload-reload cycles per test.

3. Pressuremeter Test Results

3.1 **PMT** test parameters

Pressuremeter test data is presented in Appendix One, and the summary of test results are illustrated in Table No. 1, below.

Based on pressuremeter test data, we have included subsoil profiles for the tested boring, plotting the distributions of the interpreted PMT parameters. These profiles are shown in the following pages.

3.2 PMT-Inferred soil parameters

A general guideline to interpret and infer soil properties based on available PMT test data is attached to Appendix Two This guideline suggests accepted current procedures to estimate or infer shear strength, deformation properties, and other related soil parameters. These inferred properties are summarized in Table No. 2, below.

It is recognized that the values of in-situ total horizontal stresses, σ_{h0} , presented in this report correspond to best possible estimates. These estimates were obtained using the *corrected pressure* versus *1/Volume* method, and are used in this report to infer values of the at-rest stress ratio k_0 . The following subsurface soil conditions were assumed to apply:

- Ground Surface and Ground Water elevations: as indicated on the Table No. 2, below
- Average wet and saturated unit weights: $\gamma_{wet} = 21 \text{ kN/m}^3$ and $\gamma_{sat} = 22 \text{ kN/m}^3$
- Total horizontal stresses taken as direct values of p_0 (PMT test results).

It is considered that stresses within the soil mass are defined by geostatic conditions, that is to say:

- 1. No surcharges are applied on the surface (structural loads from existing buildings nearby are negligible),
- 2. Static groundwater conditions (no seepage occurs),
- 3. Surface topography is horizontal (no slopes or excavations), and
- 4. Total vertical stresses are defined by the *wet* (unsaturated soils) and *saturated* (submerged soils) unit weights, γ_{wet} and γ_{sat} , respectively.

Using the *Pressiorama* and the associated *Pressiorama Cyclique Charts* inferred values of Young's Moduli (*E_Y*), Classification Index (*I_c*), and drained friction angle (ϕ) are also shown in Table Nos. 2a, 2b, and 2c.

T	ABLE No	o. 1 S	Summary	of Press	uremeter	Test Re	sults					Bc	ring No.	MW-05-PI	МТ	
Test	Surface El 15i	levation (m): 8.21	Contact Pressure	PMT Modulus			Un	load - Re	load Cycl	les			Yield	Net Limit		
No.					E _{Unload 1}	E _{Reload 1}		Stresses		Str	ains <u></u> AR,	/R ₀	Pressure	Pressure		
	Depth	Elevation	p ₀	EPMT	E _{Unload 2}	E _{Reload 2}	Point 1	Point 2	Point 3	Point 1	Point 2	Point 3	Рy	p*L	Е _{РМТ} / р* _L	p* _L / p _y
	[m]	[m]	[kPa]	[MPa]	[MPa]	[MPa]	[kPa]	[kPa]	[kPa]	[%]	[%]	[%]	[kPa]	[kPa]		
-	3 10	1EA 8	ЛБ	EA D	190.3	133.5	1162.1	445.3	1268.3	11.3	10.8	11.8	1160	7063	10	с 1
-	0.4.0	0.401	0	04.0	403.6	234.3	2207.3	991.5	2274.4	13.8	13.4	14.3	1102	000 /	9.1	0.1
ç	7 04	161 0	76	110 1	417.9	232.7	2009.0	710.2	2088.2	10.3	9.8	10.7	2112	0000	261	60
N	0.1	7101	2	+.0.1	778.7	399.3	3413.2	1589.4	3499.9	12.7	12.4	13.2	2++-	0600	1.71	0.0
ſ	001	1 10 2	110	110.2	810.2	442.0	3320.2	1488.8	3443.8	14.5	14.2	15.0	702	0205	011	2.2
c	9.91	0.041	0	0.011	1487.6	533.3	4618.2	2262.1	4612.1	17.0	16.7	17.4	21 00	0676	6.11	0.0
-	11 50	113 E	166	106.0	618.8	399.3	2793.0	1171.2	2962.2	12.0	11.6	12.4	0000	0107	9 6 1	3 8
t	00-E	0.01	00-	6.001	1050.5	501.7	4147.0	2068.6	4217.1	14.4	14.1	14.8	6077	010	0.71	0.0
2	17.53	140.7	208	153.6	1081.1	629.3	3995.9	1847.1	4233.1	11.7	11.5	12.2	3241	11532	13.3	3.6
>	000		000	0										1000	0.0	0.0
u		136.0	260	100 6	644.1	422.0	2899.9	1210.1	3083.1	10.1	9.7	10.5	0000	6002	15 1	2 6
0	02.22	0.001	2002	0.221	1094.4	529.6	4279.1	2133.3	4359.3	12.6	12.3	13.0	7677	1 302	t.0-	0.0
٢	00 80	130.1	338	167 7	675.5	468.7	2995.3	1228.8	3238.3	8.3	7.9	8.7	0200	10018	16 7	ΛF
	20.02	1.001	000	1.101	1227.5	586.3	4609.1	2327.3	4709.3	10.7	10.5	11.2	6077	10010	1.01	t ;
a	33 17	175.0	376	77 0	374.3	191.6	2228.1	1074.3	2227.2	13.9	13.4	14.3	1060	6777	11 5	2.1
0	11.00	0.021	0.0	0.11	624.0	315.7	3181.5	1623.3	3214.4	16.4	16.0	16.8	0000	01 22	0.	t.0
0	36.77	122.0	113	51 3	254.6	97.9	1666.0	821.2	1521.6	14.0	13.5	14.5	1108	5630	90	07
n	77.00	0.771	<u>-</u>	0.40	365.7	178.8	2259.4	1160.2	2227.8	16.5	16.1	17.0	001	0000	0.0). †
10	30.77	118.0	ARE	101 E	315.9	208.7	2182.7	1123.9	2275.4	11.2	10.7	11.6	1670	E116	C VC	3.1
2	17:00	0.011	2	0.44	385.2	303.5	3001.9	1823.1	3099.5	13.8	13.3	14.2	0.00	2	7:17	

Tab	le No. 2		-TMT-	Inferred	Parame	iters			Bc	oring No.	MW-05-	PMT	
ЪМТ	٢	ľ	Hvdroetatic	Total S	traccac	Effactive	Straccas	Stress Patio	ي s,ɓuno,	Modulus	Shear S	Strength	Classification Index
	4	₹ 8					01100000		: 3	, ≻	Ollulalieu	הומוופת	
Test	depth	water	Pressure	Vertical	Horizontal	Vertical	Horizontal		Menard's		Cohesive	Cohesionless	-
									Parameter		Behavior	Behavior	l _c
								ko			c_u	φ,	
No.	[m]	[m]	[kPa]	[kPa]	[kPa]	[kPa]	[kPa]			[MPa]	[kPa]	[degrees]	
1	3.40	-9.30	0	71	46	71	97	0.64	0.24	262	1087	45	3.61
7	7.01	-5.69	0	147	75	147	75	0.51	0.31	356	1338	51	3.44
3	9.91	-2.79	0	208	118	208	118	0.57	0.33	334	1430	45	3.28
4	14.58	1.88	18	308	166	290	148	0.51	0.38	282	1306	44	3.08
5	17.53	4.83	47	373	208	326	161	0.49	0.38	402	1774	45	3.11
9	22.20	9.50	93	476	260	383	167	0.44	0.48	258	1228	39	2.83
7	28.09	15.39	151	605	338	454	187	0.41	0.49	325	1541	39	2.82
8	33.17	20.47	201	717	375	516	174	0.34	0.47	164	1034	36	2.65
6	36.22	23.52	231	784	413	554	182	0.33	0.46	118	866	35	2.56
10	39.27	26.57	261	851	456	591	195	0.33	0.77	162	792	28	2.34
Notes													
1. Gr	ound Elevation	(m) (158.21	Water Elevati	on (m)	,	145.51		Water Depth (m	(L	12.70	
2. W	et unit weight c	of soil	21.0	[kN/m ³]					Saturated unit v	veight of soil	22.0	[kN/m ³]	
З. О	servations on	Shear Strer	յցth Parameter	s (SSP):									
ŝ	SP are conside	red either fc	Ir Undrained Co	onditions (Sho	ort Term) or Dr	ained Conditi	ons (Long Terr	n). These two c	onditions are mu	utually exclusive	ő		
	Und	Irained Con	ditions imply	cohesion is c	u , and $\phi = 0$			Drained Cor	iditions imply r	negligible cohes	sion or <i>c</i> ′=0, ar	$\phi = \phi$	
В	ased on the CI	lassification	Index I _C (Soil	Behavior Typ	e), the sugges	ted values of	the SSP are hi	ghlighted in gree	en (Thick box bo	order)			
4. Th	le Classificatio	n Index para	ameter, I _C , is i	ndicative of th	ne soil type of t	behavior. It do	oes not exactly	relate to the Soi	I Classification to	ypes as those o	btained		
, Z	a Grain-Size D	Distribution a	nalyses. I _C vi	aries from 1.0) to 4.5, from s	oft clays (coh	esive) to dense	e coarse sands (frictional), corre	spondingly.			

4. Closure

The subsoils data presented in this report is based on in-situ PMT testing and interpretation procedures. It should be noted that soil conditions may vary within the site and interpreted data may not be entirely representative of conditions at locations away from the tested boring. Therefore, care should be exercised when extrapolating or inferring subsoil conditions away from the borehole location.

We trust that the present report fulfills your requirements. Should you have any question, please feel free to contact the undersigned.

Sincerely,

In-Depth Geotechnical Inc.

Gabriel Sedran, P.Eng., Ph.D. President

Appendix One

Pressuremeter Results - Data

MW-05-PMT

pages 1 to 10

Volume [cm ³] 2 40		orrected)			ooncole	i Test uata						,
Volume [cm ³] 2 40	_		15	-second read	lings	30-:	second readi	ngs	Volume	∆ p 30-15	3	0 sec
2 40	15 sec	ure [bar] 30 sec	[bar]	Volume fcm ³ 1	Δr/r ₀ [%]	[bar]	Volume (cm ³)	∆r/r₀ [%]	[cm ³]	[bar]	Pressure [bar]	1/\
40	0.12	0.12	0.38	2	0.00	0.38	2	0.00	2	0.00	0.38	0.524
	0.19	0.18	0.41	39.8	1.01	0.40	39.9	1.01	39.9	0.01	0.40	0.025
80	0.25	0.25	0.43	79.8	2.01	0.43	79.8	2.01	79.8	0.00	0.43	0.012
120	0.34	0.33	0.49	159.6	3.98	0.46	159.6	3.98	159.6	0.01	0.58	0.008
200	0.65	0.64	0.74	199.5	4.95	0.73	199.5	4.95	199.5	0.01	0.73	0.005
240	0.89	0.87	0.95	239.3	5.91	0.93	239.3	5.91	239.3	0.02	0.93	0.004
280	1.27	1.24	1.31	279.0	6.85	1.28	279.0	6.85	279.0	0.03	1.28	0.003
320	1.91	1.86	1.92	318.5	7.79	1.87	318.5	7.79	318.5	0.05	1.87	0.003
400	5.20	4.99	5.17	395.9	9.60	4.96	396.0	9.60	396.0	0.12	4.96	0.002
440	8.34	7.98	8.30	433.4	10.46	7.94	433.7	10.47	433.7	0.36	7.94	0.002
480	12.15	11.68	12.09	470.4	11.31	11.62	470.7	11.32	470.7	0.47	11.62	0.002
470	7.97	7.95	7.91	463.7	11.16	7.89	463.7	11.16			7.89	0.002
450	4.45	4.50	4.40	446.5	10.77	4.45	446.4	10.76			4.45	0.002
460	7.06	6.96	7.01	454.4	10.95	6.91	454.5	10.95			6.91	0.002
470	8.99	8.81	8.93	462.9	11.14	8.75	463.0	11.14			8.75	0.002
480	10.78	10.52	10.72	471.5 507.7	11.34	10.46	4/1./	11.34	508.1	0.51	10.46	0.002
560	19.11	18.55	19.02	544.9	13.00	18.46	545.3	13.01	545.3	0.56	18.46	0.001
600	22.90	22.18	22.79	581.8	13.83	22.07	582.4	13.84	582.4	0.72	22.07	0.001
590	16.10	16.09	16.00	577.2	13.73	15.99	577.2	13.73			15.99	0.001
580	12.39	12.46	12.29	570.2	13.57	12.36	570.1	13.57			12.36	0.001
570 580	9.92	14 18	9.82	568.6	13.39	9.91 14.08	568.8	13.39			9.91	0.001
590	17.72	17.46	17.62	576.0	13.70	17.36	576.2	13.70			17.36	0.001
600	20.62	20.25	20.51	583.7	13.87	20.14	583.9	13.88			20.14	0.001
640	26.10	25.46	25.98	619.3	14.66	25.34	619.8	14.67	619.8	0.64	25.34	0.001
680	29.52	28.88	29.40	656.6	15.49	28.76	657.1	15.50	657.1	0.64	28.76	0.001
720	35.66	35.00	35.51	731.7	17.13	34.85	732.3	17.14	732.3	0.75	34.85	0.001
800	38.38	37.70	38.22	769.6	17.95	37.54	770.1	17.96	770.1	0.68	37.54	0.001
840	40.86	40.19	40.69	807.6	18.76	40.02	808.1	18.77	808.1	0.67	40.02	0.001
	Inte	araratad		ct Doci	ulto		ī					
	inte	erpreteu	FIVIT TE	51 165		!						
[30	0-second rea	dings]	volume	strain	ra	nge						
			[cm ³]	[%]	ſ	%]	l					
p ₀	0.46	[bar]	119.7	3.0								
p.	71 00	[har]			1							
۲L	11.09	lngi]		ļ	4							
p*L	70.63	[bar]										
-	44.00			41.0	1							
р _Y	11.62	[bar]	471	11.3			_					
Epart	640	[bar]	434	10.5	{10.5 -	11.3 %}	1					
11111	0.0	[201]	.57		(.0.0 -		J					
E _{PMT} / p*L	9.1											
,	1002	[bor]	110	10.9	1							
F	1903	loari	446	10.8								
E _{Unload 1}	1335	[bar]										
E _{Unload 1} E _{Reload 1}				<u> </u>	-							
E _{Unload 1} E _{Reload 1}		[bar]	562	13.4	1							
E _{Unload 1} E _{Reload 1} E _{Unload 2}	4036											
E _{Unload 1} E _{Reload 1} E _{Unload 2} E _{Reload 2}	4036 2343	[har]										
E _{Unload 1} E _{Reload 1} E _{Unload 2} E _{Reload 2}	4036 2343	[bar]										
E _{Unload 1} E _{Reload 1} E _{Unload 2} E _{Reload 2}	4036 2343	[bar]										
E _{Unload 1} E _{Reload 1} E _{Unload 2} E _{Reload 2}	4036 2343	[bar]			-							

Pressuremeter Equipm	ent: TE	XAM Model	Probe Designation :	NX Probe	e (76 mm OD)	Drilling Method: Drilling Bit:	Mud Rotary Drilling	Test Date:	October 5, 2023	Broject:	2343 Edinton Ava Wast Toronte
Volume-controlled test as p	er ASTM	D4719	Probe No.:	A 512		Time elapsed from I	hole drilling to testing			Floject.	2545 Eginton Ave. West, Toronto
Method B			Calibration Record No.:	1		~ 5 minutes		Test Depth [m]:	2 40 (center of the probe)	Client	CEM Services Inc
Volume increments:	40) cm³	Tubing Length:	180	[ft]	Engineer: Gabriel	Sedran, P.Eng., Ph.D.	rest Depth [m].	3.40	Chent.	GEIVI Services Inc.
Maximum Volume:	1400) cm ³	Probe Lenght:	0.46	[m]	Operator: Scott Ar	ndrew Hall			In Depth Costeebnicel Droject No.	IDC 220740
Maximum Pressure:	100) bar	Probe Initial Volume:	1968	cm ³			Drilling Company:	Drill Tech Contractor	In-Depth Geolechnical Project No	IDG 230749

0.52497 0.02509 0.01253 0.00836 0.00626 0.00501 0.00418 0.00358 0.00358 0.00314 0.00280 0.00252 0.00231 0.00212 0.00224 0.00224 0.00226

0.00216 0.00212 0.00197 0.00183 0.00172 0.00173 0.00175 0.00176 0.00174 0.00174 0.00171 0.00161

Appendix One - Page 1

Field Tes	st Data (unc	orrected)			Corrected	l Test data			Cre	еер	A	uxiliary Data
		,	15	-second read	lings	30-:	second readi	ngs	Volume	Δp 30-15		30 sec
Volume [cm ³]	15 sec	30 sec	[bar]	[cm ³]	∆r/r₀ [%]	Pressure [bar]	[cm ³]	∆r/r₀ [%]	[cm ³]	[bar]	Press [bar	ure 1/V
2	0.09	0.09	0.70	2	0.00	0.70	2	0.00	2	0.00	0.70	0.51850
40	0.14	0.14	0.72	39.9 79.8	1.01	0.72	39.9 79.8	1.01	39.9	0.00	0.7	2 0.02507 4 0.01252
120	0.32	0.30	0.82	119.7	3.00	0.80	119.8	3.00	119.8	0.02	0.80	0.00835
160	0.47	0.46	0.94	159.6	3.98	0.93	159.6	3.98	159.6	0.01	0.9	3 0.00626
240	1.26	1.21	1.68	239.0	5.90	1.63	239.0	5.90	239.0	0.04	1.6	3 0.00418
280	2.18	2.08	2.57	278.3	6.84	2.47	278.4	6.84	278.4	0.10	2.4	7 0.00359
320	4.02	3.70	4.39	316.8	7.75 8.61	4.07	317.1	7.76	317.1	0.32	4.0	7 0.00315 1 0.00283
400	15.28	14.10	15.61	387.9	9.41	14.43	388.8	9.43	388.8	1.18	14.4	3 0.00257
440	21.25	19.78	21.56	423.2	10.23	20.09	424.3	10.26	424.3	1.47	20.0	9 0.00236
420	9.30	9.33	9.62	412.6	9.99	9.65	412.6	9.99			9.6	5 0.00242
410	6.69	6.78	7.01	404.7	9.80	7.10	404.6	9.80			7.10	0.00247
430	14.48	14.06	14.79	418.5	10.12	14.37	418.9	10.13			14.3	0.00239
440	17.38	16.78	17.69	426.2	10.30	17.09	426.7	10.31	400.7	4.00	17.0	9 0.00234
520	30.53	29.28	30.81	495.8	11.89	24.67	496.8	11.09	496.8	1.26	24.6	6 0.00217
560	35.08	33.87	35.34	532.2	12.71	34.13	533.2	12.74	533.2	1.21	34.1	3 0.00188
550 540	25.14 19.45	25.12 19.58	25.41	530.1 524.6	12.67 12.54	25.39 19.85	530.1 524.5	12.67	_		25.3	9 0.00189 5 0.00191
530	15.52	15.62	15.79	517.7	12.39	15.89	517.6	12.39			15.8	9 0.00193
540	22.70	22.50	22.97	522.0 528.0	12.48	22.77	522.2 528.3	12.49			22.7	7 0.00192
560	31.88	31.35	32.14	534.7	12.02	31.61	535.1	12.03			31.6	0.00183
600	39.08	38.14	39.33	569.0	13.54	38.39	569.8	13.56	569.8	0.94	38.3	9 0.00176
640	43.77	42.69	44.01	642.2	14.35	42.93	643.1	14.37	643.1	1.06	42.9	7 0.00155
720	50.79	49.63	51.01	679.7	15.99	49.85	680.7	16.01	680.7	1.16	49.8	5 0.00147
				-								
									_			
												-
	I	I I	1	1	I	1		II	_I			
	Inte	erpreted	PMT Te	st Resi	ults st	rain						
[3	0-second rea	idings]	[cm ³]	strain [%]	rai ['	n ge %]						
p ₀	0.75	[bar]	79.8	2.0								
PL	87.73	[bar]										
p*L	86.98	[bar]										
p _Y	14.43	[bar]	389	9.4			1					
E _{PMT}	1104	[bar]	354	8.6	{8.6 -	9.4 %}						
E_{PMT}/p_{L}^{*}	12.7		1	T	1							
E _{Unload 1}	4179	[bar]	405	9.8								
E _{Reload 1}	2327	[bar]										
E _{Unload 2}	7787	[bar]	518	12.4								
E _{Reload 2}	3993	[bar]										
					J							

Pressuremeter Equipmen	t: TEX	AM Model	Probe Designation :	NX Probe	e (76 mm OD)	Drilling Method: Drilling Bit:	Mud Rotary Drilling Tricone Bit	Test Date:	October 5, 2023	3	Project:	2343 Eglinton Ave. West. Toronto
Volume-controlled test as per	ASTM D4	4719	Probe No.:	A 512		Time elapsed from	hole drilling to testing					J
Method B			Calibration Record No.:	1		~ 5 minutes		Test Dopth [m]:	7.01	(center of the probe)	Client:	CEM Services Inc
Volume increments:	40	CM3	Tubing Length:	180	[ft]	Engineer: Gabriel	l Sedran, P.Eng., Ph.D.	rest Depth [m].	7.01		Chern.	GEIVI Services Inc.
Maximum Volume:	1400	cm ³	Probe Lenght:	0.46	[m]	Operator: Scott A	Indrew Hall				In Donth Contraction Drainet No.	IDC 220740
Maximum Pressure:	100	bar	Probe Initial Volume:	1968	cm ³			Drilling Company:	Drill Tech Contractor		In-Depth Geolechnical Project No	IDG 230749

0.51850 0.02507 0.01252 0.00835 0.00626 0.00501 0.00418 0.00359 0.00245

Appendix One - Page 2

Field Tes	st Data (unc	orrected)			Corrected	Test data			Cr	еер	Auxil	iary Data
		,	15-	second read	ings	30-9	second readi	ngs	Volume	Δp 30.45	3	0 sec
Volume	15 sec	ure [bar] 30 sec	[bar]	Volume	∆r/r₀ [%]	[bar]	Volume	∆r/r₀ [%]	[cm ³]	[bar]	Pressure [bar]	1/V
2	0.27	0.27	1.17	2	0.00	1.17	2	0.00	2	0.00	1.17	0.5599
40	0.33	0.32	1.19	39.7	1.00	1.18	39.7	1.00	39.7	0.01	1.18	0.025
80	0.37	0.36	1.19	79.7	2.01	1.18	79.7	2.01	79.7	0.01	1.18	0.012
160	0.43	0.42	1.22	159.6	3.98	1.27	159.6	3.98	159.6	0.00	1.27	0.006
200	0.66	0.65	1.39	199.5	4.95	1.38	199.5	4.95	199.5	0.01	1.38	0.005
240	0.85	0.84	1.55	239.3	5.91	1.54	239.3	5.91 6.86	239.3	0.01	1.54	0.004
320	1.79	1.76	2.44	318.6	7.79	2.41	318.6	7.79	318.6	0.02	2.41	0.003
360	2.85	2.79	3.48	357.7	8.71	3.42	357.8	8.71	357.8	0.06	3.42	0.0027
400	4.60 7.41	4.48	5.21	396.4 434.1	9.61	5.09	396.4 434.3	9.61	396.4 434.3	0.12	5.09	0.002
480	11.28	10.92	11.86	471.1	11.33	11.50	471.3	11.33	471.3	0.36	11.50	0.002
520	16.33	15.82	16.89	507.1	12.15	16.38	507.5	12.16	507.5	0.51	16.38	0.001
560 600	22.15	21.48	22.70	542.4 577.8	12.95	22.03	543.0 578.4	12.96	543.0	0.67	22.03	0.001
640	33.42	32.68	33.94	613.5	14.53	33.20	614.1	14.55	614.1	0.74	33.20	0.001
630	23.53	23.53	24.05	611.3	14.49	24.05	611.3	14.49			24.05	0.001
620	17.96	18.04	18.49	605.8 598.7	14.36	18.57	598.6	14.36			18.57	0.001
620	21.00	20.88	21.53	603.4	14.31	21.41	603.4	14.31			21.41	0.001
630	26.34	26.13	26.86	609.1	14.44	26.65	609.3	14.44			26.65	0.001
640	30.72	30.39	31.24	615.6	14.58	30.91	615.9	14.59	650.2	0.72	30.91	0.001
720	42.75	41.91	43.25	686.1	16.13	42.41	686.8	16.15	686.8	0.73	42.41	0.001
760	46.56	45.69	47.05	723.1	16.94	46.18	723.8	16.95	723.8	0.87	46.18	0.001
750	34.97	34.97	35.47	722.3	16.92	35.47	722.3	16.92			35.47	0.001
730	27.29	22.12	27.79	712.6	16.71	27.89	718.3	16.83			27.89	0.001
740	30.81	30.68	31.31	715.6	16.78	31.18	715.7	16.78			31.18	0.001
750	37.91	37.68	38.41	719.9	16.87	38.18	720.1	16.87			38.18	0.001
760	42.95	42.00 48.67	43.44	726.0	17.00	43.09	726.2	17.01	761 /	0.88	43.09	0.001
840	53.85	52.89	54.32	797.3	18.54	53.36	798.1	18.56	798.1	0.88	53.36	0.001
									-			
									-			
	Int	arnratad		et Rosi	ılte		1					
	inte		volume	radial		ain						
			volume	otroin	SU	000						
[3	0-second rea	idings]		Strain	ra	iye						
[3	0-second rea	idings]	[cm3]	[%]	rai ['	%]						
[3) Po	0-second rea	idings] [bar]	[cm³] 79.7	[%] 2.0	rai [%]						
[3 Po	0-second rea	[bar]	[cm³] 79.7	[%] 2.0	rai ['	%]						
[3 P ₀ P _L	0-second rea 1.18 94.13	ldings] [bar] [bar]	[cm³] 79.7	[%] 2.0	្រៃ	Nge %]						
[30 Po PL P*L	0-second rea 1.18 94.13 92.95	[bar] [bar] [bar] [bar]	[cm³] 79.7	[%] 2.0	raı ['	nge %]						
[31 Po PL p*L	0-second rea 1.18 94.13 92.95	[bar] [bar] [bar] [bar]	[cm³] 79.7	[%] 2.0	raı ['	nge %]						
[31 P ₀ P _L P [*] L P [*] L	0-second rea 1.18 94.13 92.95 27.83	lbar] [bar] [bar] [bar]	[cm³] 79.7 578	[%] 2.0 13.8	raı [Nge %]						
[34 Ро РL Р [*] L РY Е _{РМТ}	0-second rea 1.18 94.13 92.95 27.83 1103	ldings] [bar] [bar] [bar] [bar]	[cm³] 79.7 578 543	13.8 13.0	raı [* [13.0 -	13.8 %}						
[30 P ₀ P _L P [*] L P _Y E _{PMT}	0-second rea 1.18 94.13 92.95 27.83 1103	dings] [bar] [bar] [bar] [bar] [bar] [bar]	[cm*] 79.7 578 543	13.8 13.0	raı [* [13.0 -	13.8 %}						
[34 Ро РL Р [*] L Р [*] L Е _{РМТ} / Р [*] L	0-second rea 1.18 94.13 92.95 27.83 1103 11.9	dings] [bar] [bar] [bar] [bar] [bar]	[cm*] 79.7 578 543	Image: strain [%] 2.0 13.8 13.0 13.0	rau [* [13.0 -	13.8 %}						
[30 Po PL P*L PY Epht PY Epht PY EL Pht PY EL Pht P	0-second rea 1.18 94.13 92.95 27.83 1103 11.9 8102	dings] [bar] [bar] [bar] [bar] [bar] [bar] [bar] [bar]	[cm*] 79.7 578 543 599	Image: strain [%] 2.0 13.8 13.0 14.2	rau [* [13.0 -	13.8 %}						
[30 Po PL P [*] L PY E _{PMT} /P [*] L E _{PMT} /P [*] L	0-second rea 1.18 94.13 92.95 27.83 1103 11.9 8102	dings]	[cm³] 79.7 578 543 599	[%] 2.0 13.8 13.0 14.2	(13.0 -	13.8 %}						
[31 P ₀ P _L P [*] L P _Y E _{PMT} E _{PMT} / p [*] L E _{Unload 1} E _{Reload 1}	0-second read 1.18 94.13 92.95 27.83 1103 11.9 8102 4420	dings]	[cm³] 79.7 578 543 599	13.8 13.0 14.2	fai (* {13.0 -	13.8 %}						
[3/ Po PL P*L PY EpMT / P*L EUnicad 1 EReload 1 EUnicad 2	0-second rea 1.18 94.13 92.95 27.83 1103 11.9 8102 4420 14876	dings]	[cm ²] 79.7 578 543 599 712	13.8 13.8 14.2 16.7	fai [[{13.0 -	13.8 %)						
[30 Po PL P [*] L PY E _{PMT} /P [*] L E _{Unload 1} E _{Unload 2}	0-second read 1.18 94.13 92.95 27.83 1103 11.9 8102 4420 14876	dings]	[cm ²] 79.7 578 543 599 712	13.8 13.0 14.2 16.7	rai [13.8 %}						
[31 Po PL P [*] L PY E _{PMT} E _{PMT} /P [*] L E _{Unload 1} E _{Reload 1} E _{Unload 2}	0-second read 1.18 94.13 92.95 27.83 1103 11.9 8102 4420 14876 5333	dings]	[cm³] 79.7 578 543 599 712	13.8 13.0 14.2 16.7	(13.0 -	13.8 %)						
[31 P0 PL P1 P1 PY EpMT EpMT PY EpMT P1 Equilation 2 Encload 1 Euroload 2 EReload 2	0-second real 1.18 94.13 92.95 27.83 1103 11.9 8102 4420 14876 5333	dings]	[cm ³] 79.7 578 543 599 712	13.8 13.8 13.0 14.2 16.7	fat [{13.0 -	13.8 %}						
[3/ Po PL P*L PY E _{PMT} /P*L EUnload 1 EReload 1 EReload 2 EReload 2	0-second real 1.18 94.13 92.95 27.83 1103 11.9 8102 4420 14876 5333	dings]	[cm ²] 79.7 578 543 599 712	13.8 13.0 14.2 16.7	(13.0 -	13.8 %}						

Determination	of	total	contact	pressure	p
					F U

Pressuremeter Equipment: TEXAM Model	Probe Designation :	NX Probe	(76 mm OD)	Drilling Method: Drilling Bit:	Mud Rotary Drilling Tricone Bit	Test Date:	October 5, 2023	Project:	2343 Eglinton Ave. West. Toronto
Volume-controlled test as per ASTM D4719	Probe No.:	A 512		Time elapsed from hole	drilling to testing				0
Method B	Calibration Record No.:	1		~ 5 minutes		Toot Dooth [m]	(center of the probe)	Client	CEM Services Inc
Volume increments: 40 cm ³	Tubing Length:	180	[ft]	Engineer: Gabriel Sed	Iran, P.Eng., Ph.D.	rest Depth [h].	9.91	Client.	GEIVI Services Inc.
Maximum Volume: 1400 cm ³	Probe Lenght:	0.46	[m]	Operator: Scott Andre	w Hall			In Depth Costeebnied Project No.	
Maximum Pressure: 100 bar	Probe Initial Volume:	1968	cm ³			Drilling Company:	Drill Tech Contractor	In-Depth Geolechnical Project No	IDG 230749

					Corrected	I Test data			1 [Cre	ер	1	Auxil	iary Data
Field Tes	st Data (unc	orrected)	15-	second read	inas	30-	second readi	inas	╏┠				3	0 sec
Volume	Press	ure [bar]	Pressure	Volume	∆r/r₀	Pressure	Volume	∆r/r₀		Volume	∆ p ₃₀₋₁₅		Pressure	1 / V
[cm ³]	15 sec	30 sec	[bar]	[cm ³]	[%]	[bar]	[cm ³]	[%]	ļļ	[cm3]	[bar]		[bar]	0.507.40
40	0.30	0.30	1.66	2 39.7	0.00	1.66	2 39.7	1.00	╏┠	39.7	0.00		1.66	0.56748
80	0.39	0.38	1.67	79.7	2.00	1.66	79.7	2.01		79.7	0.01		1.66	0.01255
120	0.42	0.42	1.66	119.7 159.6	3.00	1.66	119.7	3.00		119.7	0.00		1.66	0.00836
200	0.64	0.63	1.83	199.5	4.95	1.82	199.5	4.95		199.5	0.01		1.82	0.00501
240	0.90	0.89	2.06	239.3	5.91 6.85	2.05	239.3 278.9	5.91 6.85		239.3	0.01		2.05	0.00418
320	2.68	2.61	3.79	317.9	7.78	3.72	317.9	7.78		317.9	0.07		3.72	0.00315
360 400	5.45 10.03	5.33 9.82	6.54 11.10	355.7	8.66 9.51	6.42 10.89	355.8 392.2	8.66 9.51		355.8	0.12		6.42 10.89	0.00281
440	15.76	15.45	16.81	427.5	10.33	16.50	427.8	10.34		427.8	0.31		16.50	0.00234
480 520	21.78	21.35 26.91	22.82	462.7	11.14	22.39 27.93	463.1 498.7	11.15		463.1	0.43		22.39	0.00216
510	18.56	18.56	19.58	495.3	11.88	19.58	495.3	11.88	11				19.58	0.00202
500 490	13.84	13.88 10.68	14.87	489.0 481.6	11.74 11.57	14.91 11.71	489.0 481.5	11.74 11.57					14.91	0.00205
500	16.81	16.72	17.84	486.7	11.68	17.75	486.7	11.69					17.75	0.00205
510	21.76	21.63	22.78	492.8	11.82	22.65	492.9	11.82					22.65	0.00203
520	32.23	31.84	33.23	534.5	12.77	32.84	534.8	12.77		534.8	0.39		32.84	0.00200
600	36.90	36.40	37.89	570.7	13.58	37.39	571.1	13.59		571.1	0.50		37.39	0.00175
640 630	40.89 30.18	30.18	41.87 31.16	607.6	14.40	41.47 31.16	607.9 606.1	14.41		607.9	0.40		41.47 31.16	0.00165
620	24.12	24.18	25.10	600.9	14.25	25.16	600.8	14.25					25.16	0.00166
610 620	19.63 28.03	19.70 27.98	20.62	594.4 597.8	14.11	20.69	594.4 597.8	14.11					20.69	0.00168
630	34.46	34.28	35.44	602.7	14.29	35.26	602.8	14.30					35.26	0.00166
640	38.72	38.44	39.70	609.3	14.44	39.42	609.5	14.44		CAE O	0.51		39.42	0.00164
720	44.46	43.95	45.43	644.8	16.04	44.92 48.56	682.3	16.05		645.2	0.51		44.92	0.00155
760	50.91	50.40	51.86	719.6	16.86	51.35	720.0	16.87		720.0	0.51		51.35	0.00139
									11					
			-	-										
			DMT T	-1 D	.14 -		T							
	Inte	erpreted	PMILIE	st Resi	lits	- 1	ļ							
[3	0-second rea	adings]	volume	strain	str	ain nge								
	1	T	[cm3]	[%]	[9	%]	l							
P ₀	1.66	[bar]	119.7	3.0										
pL	86.53	[bar]			1									
	04.07				1									
p*∟	84.87	[bar]												
py	22.39	[bar]	463	11.1										
Eng	1069	[har]	428	10.3	{10.3 -	11.1 %}	1							
-PMT	1003	լեն	720	10.0	(10.0 -	/0j	l							
E _{PMT} / p* _L	12.6				-									
E _{Unload 1}	6188	[bar]	482	11.6										
	2000	n	-		1									
EReload 1	3993	[bar]												
E _{Unload 2}	10505	[bar]	594	14.1										
Epirina	5017	[har]			1									
-reload 2	5517	[501]	-											
			1		1									

Pressuremeter Equipme	ent: TEX	AM Model	Probe Designation :	NX Probe	e (76 mm OD	Drilling Method: Drilling Bit:	Mud Rotary Drilling Tricone Bit	Test Date:	October 5, 2023	Project:	2343 Eglinton Ave. West, Toronto
Volume-controlled test as pe	er ASTM D	4719	Probe No.:	A 512		Time elapsed from I	hole drilling to testing				U
Method B			Calibration Record No.:	1		~ 5 minutes		Toot Dooth [m]	(center of the probe)	Client	CEM Services Inc
Volume increments:	40	CM3	Tubing Length:	180	[ft]	Engineer: Gabriel	Sedran, P.Eng., Ph.D.	rest Depth [m].	14.50	Client.	GEIVI Services Inc.
Maximum Volume:	1400	cm ³	Probe Lenght:	0.46	[m]	Operator: Scott Ar	ndrew Hall			In Donth Contrological Draiget No.	100 220740
Maximum Pressure:	100	bar	Probe Initial Volume:	1968	cm ³			Drilling Company:	Drill Tech Contractor	In-Depth Geolechnical Project No	IDG 230749

Appendix One - Page 4

Field Tes	st Data (unco	orrected)			Corrected	Test data			Cre	еер	Auxili	ary Data
Volume	Press	Ire [bar]	15-	second read	lings Ar/r	30-	second readi	ings Ar/r-	Volume	∆ p ₃₀₋₁₅	30 Pressure) sec
[cm ³]	15 sec	30 sec	[bar]	[cm ³]	[%]	[bar]	[cm ³]	[%]	[cm ³]	[bar]	[bar]	17
2 40	0.38	0.38	2.03	2 39.7	0.00	2.03 2.03	2 39.7	0.00	2 39.7	0.00	2.03	0.58
80	0.49	0.49	2.06	79.6	2.00	2.06	79.6	2.00	79.6	0.00	2.06	0.012
120	0.69	0.56	2.09	159.5	3.97	2.09	159.5	3.97	159.5	0.00	2.09	0.008
200	0.89	0.87	2.37	199.3	4.94	2.35	199.3	4.94	199.3	0.02	2.35	0.005
240 280	2.36	2.31	3.78	238.9	6.83	3.73	239.0	6.83	239.0	0.03	3.73	0.00
320	4.67	4.56	6.07	316.3	7.74	5.96	316.4	7.74	316.4	0.11	5.96	0.00
400	9.07	15.30	10.45	352.8	9.40	10.25	353.0	9.41	353.0	0.20	16.66	0.002
440	23.58	23.00	24.92	421.3	10.19	24.34	421.8	10.20	421.8	0.58	24.34	0.002
480 520	31.71	38.65	40.54	454.9	11.73	32.41 39.96	455.4 489.4	11.75	455.4	0.63	39.96	0.002
510	28.28	28.25	29.59	487.6	11.70	29.56	487.6	11.71			29.56	0.00
490	17.06	17.15	18.38	482.8	11.60	23.14	482.7 476.4	11.59			18.47	0.00
500	25.10	25.00	26.42	480.1	11.53	26.32	480.2	11.54			26.32	0.00
510 520	31.66	31.47 36.56	32.97 38.15	484.9 490.8	11.64 11.78	32.78	485.1 491.0	11.65 11.78			32.78	0.00
560	46.13	45.50	47.42	523.4	12.52	46.79	523.9	12.53	523.9	0.63	46.79	0.00
			-						-			
			-						-			
	Inte	erpreted	PMT Te	st Resi	ults							
[20) cocord roc	dingol	volume	radial	sti	ain						
ĮSC	J-Second rea	ungsj	[cm ³]	[%]	181 ['	%]						
p ₀	2.08	[bar]	119.6	3.0			-					
D,	117.40	[har]			1							
PL	117.40	[Dai]			1							
p*L	115.32	[bar]			l							
р _Y	32.41	[bar]	455	11.0								
Ener	1536	[har]	422	10.2	{10.2 -	11.0 %\						
► PMT	1000	լոգլ]	422	10.2	{10.2 -	11.0 70}						
- / +	13.3				-							
E _{PMT} / p [^] L	10011	[bar]	476	11.5]							
E _{PMT} / P [^] L E _{Unload 1}	10811	-			1							
E _{PMT} / P [*] L E _{Unload 1}	10811	[be-1										
E _{PMT} / P [*] L E _{Unload 1} E _{Reload 1}	6293	[bar]										
E _{PMT} / p [^] L E _{Unload 1} E _{Reload 1}	6293	[bar]										
E _{PMT} / p [^] L E _{Unload 1} E _{Reload 1}	6293	[bar]										
E _{PMT} / P [^] L E _{Unload 1} E _{Reload 1}	6293	[bar]										
E _{PMT} / P [^] L E _{Unload 1} E _{Reload 1}	6293	[bar]										

Pressuremeter Equipm	ent: TEX	XAM Model	Probe Designation :	NX Probe	e (76 mm OD)	Drilling Method: Drilling Bit:	Mud Rotary Drilling Tricone Bit	Test Date:	October 5, 2023	Project:	2343 Eglinton Ave. West. Toronto
Volume-controlled test as p	er ASTM D	D4719	Probe No.:	A 512		Time elapsed from ho	ole drilling to testing				,, j,
Method B			Calibration Record No.:	1		~ 5 minutes		Test Dopth [m]:	17 52 (center of the probe)	Client:	CEM Services Inc
Volume increments:	40	CM3	Tubing Length:	180	[ft]	Engineer: Gabriel S	Sedran, P.Eng., Ph.D.	Test Depth [m].	17.55	Chern.	GEINI Services IIIC.
Maximum Volume:	1400	CM3	Probe Lenght:	0.46	[m]	Operator: Scott And	drew Hall			In Donth Controbuing Project No :	IDC 220740
Maximum Pressure:	100	bar	Probe Initial Volume:	1968	cm ³			Drilling Company:	Drill Tech Contractor	III-Deptil Geolecillical Project No	IDG 230749

0.58866 0.02521 0.01256 0.00836 0.00627 0.00502 0.00359 0.00258 0.00258 0.00258 0.00258 0.00223 0.00220 0.00220 0.00220 0.00204 0.00205

Appendix One - Page 5

Volume [cm ³] 2 40 80 120 160 200 240 280 320 320 360 400 440 430 420	Pressu 15 sec 0.42 0.50 0.57 0.68 0.83 1.14 1.91	ure [bar] 30 sec 0.42 0.47 0.55 0.65	15- Pressure [bar] 2.52 2.57	Volume [cm ³]	ings Δr/r ₀ [%]	30-s Pressure [bar]	second readi Volume [cm ³]	ngs Δr/r ₀ [%]	Volume [cm ³]	∆ p ₃₀₋₁₅ [bar]	Pressure [bar]	30 sec 1 / V
[cm ³] 2 40 80 120 160 200 240 240 240 320 320 360 400 440 430 410	0.42 0.50 0.57 0.68 0.83 1.14	30 sec 0.42 0.47 0.55 0.65	[bar] 2.52 2.57	[cm ³]	[%]	[bar]	[cm ³]	[%]	[cm ³]	[bar]	[bar]	17V
2 40 80 120 200 240 280 320 360 400 440 430 420	0.42 0.50 0.57 0.68 0.83 1.14 1.91	0.42 0.47 0.55 0.65	2.52 2.57	2	0.00							
40 80 120 160 200 240 280 320 360 440 430 420	0.50 0.57 0.68 0.83 1.14 1.91	0.55	2.57	346	1.00	2.52	2	0.00	2	0.00	2.52	0.59986
120 160 200 240 280 320 360 400 440 430 420 410	0.68 0.83 1.14 1.91	0.65	2.60	79.5	2.00	2.58	79.6	2.00	79.6	0.02	2.58	0.02324
200 240 280 320 360 400 440 430 420 410	1.14	0.72	2.67	119.5 159.3	2.99 3.97	2.64	119.5 159.4	2.99 3.97	119.5 159.4	0.03	2.64	0.00837
240 280 320 360 400 440 430 420 410	1.91	0.95	3.08	199.1	4.94	2.89	199.2	4.94	199.2	0.19	2.89	0.00502
320 360 400 440 430 420 410	3.95	1.62 3.60	3.82 5.83	238.5 276.9	5.89 6.80	3.53 5.48	238.7	5.89 6.81	238.7	0.29	3.53	0.00419
360 400 440 430 420 410	8.37	7.91	10.23	313.4	7.67	9.77	313.7	7.68	313.7	0.46	9.77	0.00319
440 430 420 410	21.50	21.10	23.32	348.3	9.30	22.92	348.7 383.3	9.31	348.7	0.47	22.92	0.00287
430 420 410	27.64	27.20	29.44	418.1	10.11	29.00	418.4	10.12	418.4	0.44	29.00	0.00239
<u>410</u>	13.67	13.70	15.48	409.2	9.91	15.51	409.1	9.91			15.51	0.00241
420	10.24	10.29	12.05	401.9	9.74 9.85	12.10 18.46	401.8	9.74 9.85			12.10 18.46	0.00249
430	21.92	21.76	23.72	412.6	9.99	23.56	412.8	9.99			23.56	0.00242
440 480	25.97 32.74	32.32	27.77 34.52	419.4 454.0	10.14	27.56 34.10	419.6 454.4	10.15	454.4	0.42	27.56	0.00238
520	37.42	36.94	39.19	490.3	11.77	38.71	490.7	11.78	490.7	0.48	38.71	0.00204
550	30.61	30.62	43.29 32.37	527.1	12.60	32.38	527.5	12.61	527.5	0.50	42.79	0.00190
540	24.17	24.22	25.93	520.8	12.46	25.98	520.8	12.46			25.98	0.00192
540	28.32	28.22	30.08	514.6	12.32	29.98	514.5	12.31			29.98	0.00194
550	34.87	34.69	36.63	522.4	12.49	36.45	522.5	12.50			36.45	0.00191
600	45.05	44.51	46.79	564.3	13.44	46.25	564.7	13.45	564.7	0.54	46.25	0.00103
	+								-			-
	+								-			-
											1 1	
	Inte	erpreted	PMT Tes	st Resu	ults		ſ					
r	20 accord to a	diagol	volume	radial	sti	ain						
ŀ	30-second rea	laingsj	[cm³]	[%]	rai ['	%]						
\mathbf{p}_0	2.60	[bar]	79.6	2.0								
pL	82.43	[bar]										
p*;	79.82	[har]			1							
ΡL	10.02	[bai]		-								
р _Y	22.92	[bar]	383	9.3								
E _{PMT}	1226	[bar]	349	8.5	{8.5 -	9.3 %}						
E_{PMT}/p_{L}^{*}	15.4						•					
E _{Unload 1}	6441	[bar]	402	9.7	1							
Francis	4220	[har]			1							
⊢Reload 1	4220	[Ddi]	-	44.5								
_	10944	[bar]	514	12.3								
E _{Unload 2}		The et-1	1		1							
E _{Unload 2} E _{Reload 2}	5296	[bař]										
E _{Unload 2} E _{Reload 2}	5296	[bar]										
E _{Unload 2} E _{Reload 2}	5296	[bar]										

Determination	of	total	contact	pressure	p

Breeseuremeter Equipp			Droho Designation		a (76 mm OD)	Drilling Method:	Mud Rotary Drilling	Toot Doto:	October 5, 2022		
Pressuremeter Equipm		AIVI WOUEI	Probe Designation .	INA PIOD	e (76 mm OD)	Drilling Bit:	Tricone Bit	Test Date.	October 5, 2023	Project:	2343 Ealinton Ave. West. Toront
Volume-controlled test as	per ASTM D	4719	Probe No.:	A 512		Time elapsed from ho	ble drilling to testing			- ,	· · · · · · · · · · · · · · · · · · ·
Method B			Calibration Record No.:	1		~ 5 minutes		Teat Danth [m]	(center of the probe)	Client	CEM Sandiaga Ing
Volume increments:	40	cm ³	Tubing Length:	180	[ft]	Engineer: Gabriel S	edran, P.Eng., Ph.D.	rest Depth [m].	22.20	Client.	GEIVI Services Inc.
Maximum Volume:	1400	cm ³	Probe Lenght:	0.46	[m]	Operator: Scott And	frew Hall			In Depth Costeebnied Project No.	IDC 220740
Maximum Pressure:	100	bar	Probe Initial Volume:	1968	cm ³			Drilling Company:	Drill Tech Contractor	In-Depth Geolechnical Project No	IDG 230749

0.59986 0.02524 0.01257 0.00837 0.00627 0.00502 0.00419 0.00361 0.00281 0.00281 0.00281 0.00241 0.00244 0.00242 0.00242 0.00242

0.00238 0.00220 0.00204 0.00190 0.00192 0.00192 0.00193 0.00193 0.00193 0.00189 0.00177

Appendix One - Page 6

F1	- D-1. (Corrected	l Test data			Cı	еер	Auxi	liary Data
Field Tes	st Data (unc	orrected)	15-	second read	ings	30-	second read	ings	Volume	A	3	0 sec
Volume	Press	ure [bar]	Pressure	Volume	∆r/r₀	Pressure	Volume	∆r/r₀	volume	Δp 30-15	Pressure	1 / V
[cm-] 2	0.48	30 sec	[bar] 3.16	[cm*]	0.00	[bar] 3.16	[cm*]	0.00	[cm*]	[bar]	[bar] 3.16	0.61748
40	0.51	0.50	3.15	39.6	1.00	3.14	39.6	1.00	39.6	0.01	3.14	0.02525
80	0.70	0.68	3.30	79.4	2.00	3.28	79.5 119.2	2.00	79.5	0.02	3.28	0.01258
160	1.58	1.49	4.12	158.7	3.96	4.03	158.8	3.96	158.8	0.09	4.03	0.00630
200	2.65	2.45	5.16	197.9	4.91	4.96	198.1	4.91	198.1	0.20	4.96	0.00505
240	11.63	4.79	14.09	236.0	6.66	13.70	230.2	6.67	236.2	0.29	13.70	0.00423
320	20.40	19.96	22.83	303.8	7.44	22.39	304.2	7.45	304.2	0.44	22.39	0.00329
360 350	27.93 18.51	27.54	30.34 20.93	337.9 335.3	8.25	29.95 20.90	338.2 335.4	8.25	338.2	0.39	29.95	0.00296
340	13.37	13.38	15.79	329.4	8.05	15.80	329.4	8.05			15.80	0.00304
330	9.78	9.86	12.21	322.2	7.88	12.29 18.84	322.2	7.88			12.29	0.00310
350	21.97	21.80	24.39	332.6	8.12	24.22	332.7	8.12			24.22	0.00301
360	26.41	26.20	28.82	339.1	8.27	28.61	339.2	8.28	272.2	0.45	28.61	0.00295
400	39.65	39.13	42.03	408.6	9.89	41.51	409.0	9.90	409.0	0.45	41.51	0.00245
480	44.26	43.73	46.62	444.9	10.73	46.09	445.3	10.74	445.3	0.53	46.09	0.00225
470	33.01 25.63	32.99	35.38	443.8 439.7	10.70	35.36 28.05	443.8	10.71			35.36	0.00225
450	20.82	20.90	23.19	433.5	10.47	23.27	433.4	10.47			23.27	0.00231
460	30.09	29.99	32.46	436.1	10.53	32.36	436.2	10.53			32.36	0.00229
470	37.18	41.82	39.55	440.5	10.63	39.37 44.18	440.7	10.63			44.18	0.00227
520	48.23	47.66	50.58	481.8	11.57	50.01	482.2	11.58	482.2	0.57	50.01	0.00207
560	53.07	52.53 56.77	55.40	517.9	12.39	54.86	518.4	12.40	518.4	0.54	54.86	0.00193
000	57.50	30.11	39.01	554.0	13.22	59.08	555.0	13.23	555.0	0.55	33.00	0.00100
			-									
										-		
	Int	orprotod	DMT To	et Doci	ulte		i					
10		erpreteu	volume	radial	sti	ain						
[Ji	o-second rea	adingsj	[cm ³]	[%]	[%]						
р ₀	3.38	[bar]	79.5	2.0								
PL	103.55	[bar]										
P L	22.20	[bar]	204	75								
Faur	1577	[bar]	271	67	16.7	7.5 %1						
-РМГ РМТ / D*,	15.7	[Jai]	2/1	0.7	{0.7 -	1.0 /0]						
E _{Unload 1}	6755	[bar]	322	7.9	1							
E _{Reload 1}	4687	[bar]										
E _{Unload 2}	12275	[bar]	433	10.5								
E _{Reload 2}	5863	[bar]										
			1									
	1	1	1	1	1							

Determination	of	total	contact	pressure	p
					F U

Pressuremeter Equipme	ent: TE>	KAM Model	Probe Designation :	NX Probe	e (76 mm OD)	Drilling Method: Drilling Bit:	Mud Rotary Drilling Tricone Bit	Test Date:	October 5, 2023	Project:	2343 Eglinton Ave. West, Toronto
Volume-controlled test as pe	er ASTM D	04719	Probe No.:	A 512		Time elapsed from hole	e drilling to testing				S ,
Method B			Calibration Record No.:	1		~ 5 minutes		Test Depth [m]:	center of the probe)	Client	CEM Services Inc
Volume increments:	40	CM3	Tubing Length:	180	[ft]	Engineer: Gabriel See	dran, P.Eng., Ph.D.	rest Depth [m].	20.09	Chent.	GEIM Services Inc.
Maximum Volume:	1400	CM3	Probe Lenght:	0.46	[m]	Operator: Scott Andre	ew Hall			In Depth Costeebnical Project No.	IDC 220740
Maximum Pressure:	100	bar	Probe Initial Volume:	1968	cm ³			Drilling Company:	Drill Tech Contractor	In-Depth Geolechnical Project No	IDG 230749

Appendix One - Page 7

	st Data (unc	orrected)			Corrected				0.	p		
Volume	Proces	ure [bar]	15-	-second read	ings	30-	second readi	ngs	Volume	∆ p ₃₀₋₁₅	3 Processo	0 sec
[cm ³]	15 sec	30 sec	[bar]	[cm ³]	[%]	[bar]	[cm ³]	[%]	[cm ³]	[bar]	[bar]	
2	0.56	0.56	3.74	2	0.00	3.74	2	0.00	2	0.00	3.74	0.6
40	0.63	0.62	3.77	39.5	1.00	3.76	39.5	1.00	39.5	0.01	3.76	0.0
120	0.68	0.67	3.75	119.5	2.99	3.74	119.5	2.99	119.5	0.01	3.74	0.0
160	0.72	0.71	3.76	159.4	3.97	3.75	159.4	3.97	159.4	0.01	3.75	0.0
200	0.77	0.75	3.78	199.4 239.4	4.94	3.76	199.4 239.4	4.94	239.4	0.02	3.76	0.0
240	0.80	0.79	3.78	239.4	6.86	3.83	279.3	6.86	279.3	0.01	3.83	0.0
320	1.09	1.04	4.02	319.1	7.80	3.97	319.2	7.81	319.2	0.05	3.97	0.0
360	1.61	1.57	4.52	358.7	8.73	4.48	358.8	8.73	358.8	0.04	4.48	0.0
400	5.47	5.01	8.35	435.7	10.52	7.89	436.0	10.53	436.0	0.46	7.89	0.0
480	8.79	8.07	11.65	473.0	11.37	10.93	473.6	11.39	473.6	0.72	10.93	0.0
520	12.77	11.97	15.61	509.9	12.21	14.81	510.5	12.22	510.5	0.80	14.81	0.0
600	20.33	19.47	23.14	583.9	13.04	22.28	584.6	13.89	584.6	0.82	22.28	0.0
590	13.33	13.35	16.15	579.4	13.77	16.17	579.4	13.77			16.17	0.0
580	10.07	10.13	12.89	572.0	13.61	12.95	572.0	13.61			12.95	0.0
570	7.84 12.26	7.92	10.66	563.8	13.42	10.74	563.7	13.42			10.74	0.0
590	14.93	14.65	17.75	578.2	13.75	17.47	578.4	13.75			17.47	0.0
600	17.12	16.70	19.93	586.4	13.93	19.51	586.8	13.94			19.51	0.0
640	23.07	22.23	25.87	621.7	14.72	25.03	622.4	14.73	622.4	0.84	25.03	0.0
720	29.93	29.03	32.72	696.3	16.36	31.82	697.0	16.37	697.0	0.91	31.82	0.0
710	20.89	20.92	23.68	693.4	16.29	23.71	693.4	16.29			23.71	0.0
700	16.55	16.60	19.34	686.9	16.15	19.39	686.8	16.15			19.39	0.0
690 700	13.35	13.44	16.14 22.80	679.4 684.1	15.99	16.23	679.3 684.2	15.98			22.67	0.0
710	24.27	24.02	27.06	690.8	16.23	26.81	691.0	16.24			26.81	0.0
720	27.20	26.85	29.99	698.4	16.40	29.64	698.7	16.41			29.64	0.0
760	32.60	31.88	35.37	734.2	17.18	34.65	734.7	17.19	734.7	0.72	34.65	0.0
840	37.87	37.09	40.62	810.0	18.81	39.84	810.6	18.83	810.6	0.78	39.84	0.0
880	39.99	39.18	42.73	848.3	19.63	41.92	848.9	19.64	848.9	0.81	41.92	0.0
920	41.81	41.01	44.54	886.9	20.45	43.74	887.5	20.46	887.5	0.80	43.74	0.0
[3]	Inte		PMT Te	st Resu	ults sti ra	rain						
	0.75		[cm ³]	[%]	[%]	l					
p ₀	3.75	[bar]	159.4	4.0								
PL	70.97	[bar]	_									
p*L	67.22	[bar]										
р _Y	19.06	[bar]	547	13.1			I					
E _{PMT}	770	[bar]	511	12.2	{12.2 -	13.1 %}						
E _{PMT} / p*L	11.4		_	T	1							
E _{Unload 1}	3743	[bar]	564	13.4								
	1916	[bar]	_									
E _{Reload 1}		[bar]	679	16.0								
E _{Reload 1} E _{Unload 2}	6240	[bai]										
E _{Reload 1} E _{Unload 2} E _{Reload 2}	6240 3157	[bar]										
E _{Reload 1} E _{Unload 2} E _{Reload 2}	6240 3157	[bar]										

Pressuremeter Equipment:	TEX	AM Model	Probe Designation :	NX Probe	e (76 mm OD)	Drilling Method: Drilling Bit:	Mud Rotary Drilling Tricone Bit	Test Date:	October 6, 2023	Project:	2343 Eglinton Ave. West, Toronto
Volume-controlled test as per A	STM D4	719	Probe No.:	A 512		Time elapsed from ho	le drilling to testing				J J J J J J J J J J
Method B			Calibration Record No.:	1		~ 5 minutes		Toot Dooth [m]	center of the probe)	Client	CEM Services Inc
Volume increments:	40	CM3	Tubing Length:	180	[ft]	Engineer: Gabriel S	edran, P.Eng., Ph.D.	rest Depth [m].	33.17	Chent.	GEIVI Services Inc.
Maximum Volume:	1400	Cm ³	Probe Lenght:	0.46	[m]	Operator: Scott And	rew Hall			In Depth Castashniasi Draiset No.	IDC 220740
Maximum Pressure:	100	bar	Probe Initial Volume:	1968	cm ³			Drilling Company:	Drill Tech Contractor	In-Depth Geolechnical Project No	IDG 230/49

0.64264 0.02531 0.01258 0.00627 0.00501 0.00501 0.00358 0.00358 0.00313 0.00279 0.00251 0.00229 0.00221 0.00221 0.00221 0.00221 0.00221 0.00173 0.00173 0.00175

Appendix One - Page 8

Field Tes	st Data (unc	orrected)			Coneciel					~~	Auxii	y Da
	Barra		15-	second read	ings	30-	second readi	ngs	Volume	Δ p ₃₀₋₁₅	3	0 sec
fcm ³ 1	15 sec	Ure [bar] 30 sec	fbarl	fcm ³ 1	∆r/r₀ [%]	[bar]	fcm ³ 1	∆r/r₀ [%]	[cm ³]	(bar)	Pressure [bar]	1
2	0.62	0.62	4.10	2	0.00	4.10	2	0.00	2	0.00	4.10	0.6
40	0.67	0.65	4.11	39.5	1.00	4.09	39.5	1.00	39.5	0.02	4.09	0.0
80	0.74	0.70	4.14	79.4	2.00	4.10	79.4	2.00	79.4	0.04	4.10	0.0
120	0.79	0.75	4.16	119.4	2.99	4.12	119.4	2.99	119.4	0.04	4.12	0.0
200	0.90	0.85	4.21	199.3	4.94	4.16	199.3	4.94	199.3	0.05	4.16	0.0
240	1.07	0.97	4.35	239.2	5.90	4.25	239.2	5.90	239.2	0.10	4.25	0.0
280	1.29	1.12	4.54	279.0	6.85	4.37	279.1	6.86	279.1	0.17	4.37	0.0
320	2 15	1.39	4.76	318.8	7.80	4.62	318.9	7.80	318.9	0.14	4.62	0.0
400	2.95	2.59	6.14	397.7	9.64	5.78	397.9	9.65	397.9	0.36	5.78	0.0
440	4.33	3.65	7.50	436.6	10.54	6.82	437.1	10.55	437.1	0.68	6.82	0.0
480	7.14	5.55	10.30	474.3	11.40	8.71	475.6	11.43	475.6	1.59	8.71	0.0
520	9.65	10.95	15.79	550.0	13.12	14.08	551.3	13.15	551.3	1.76	14.08	0.0
600	15.25	13.55	18.36	587.9	13.96	16.66	589.3	13.99	589.3	1.70	16.66	0.0
590	8.65	8.53	11.76	583.1	13.86	11.64	583.2	13.86			11.64	0.0
580	6.08	6.15	9.20	575.2	13.68	9.27	575.1	13.68			9.27	0.0
580	7.97	7.71	11.09	573.7	13.46	10.83	573.9	13.47			10.83	0.0
590	9.45	9.05	12.56	582.5	13.84	12.16	582.8	13.85			12.16	0.0
600	10.77	10.25	13.88	591.5	14.04	13.36	591.9	14.05			13.36	0.0
640	15.35	13.97	18.45	627.8	14.85	17.07	628.9	14.87	628.9	1.38	17.07	0.0
720	20.97	19.51	21.74	703.4	16.51	20.18	704.5	16.54	704.5	1.56	22.59	0.0
710	13.74	13.68	16.83	699.1	16.42	16.77	699.2	16.42	104.0	1.40	16.77	0.0
700	10.52	10.64	13.61	691.7	16.25	13.73	691.6	16.25			13.73	0.0
690	8.37	8.51	11.46	683.4	16.07	11.60	683.3	16.07			11.60	0.0
700	12.73	12.45	15.82	689.9	16.22	15.54	690.1 698.2	16.22			15.54	0.0
720	17.29	16.63	20.35	706.3	16.57	19.71	706.8	16.59			19.71	0.0
760	23.05	21.77	26.12	741.7	17.34	24.84	742.7	17.37	742.7	1.28	24.84	0.0
800	26.15	24.85	29.21	779.3	18.15	27.91	780.3	18.18	780.3	1.30	27.91	0.0
840	28.81	27.51	31.86	817.2	18.97	30.56	818.2	18.99	818.2	1.30	30.56	0.0
920	32.99	31.64	36.02	893.8	20.59	34.67	894.9	20.62	894.9	1.35	34.67	0.0
960	34.85	33.48	37.87	932.4	21.40	36.50	933.5	21.42	933.5	1.37	36.50	0.0
	-				-				-			
			-						-			
	Inte	arnratad	PMT To	st Rasi	ilte		I					
[2(volume	radial	st	rain						
[50		ungaj	[cm ³]	[%]	[%]						
P ₀	4.13	[bar]	159.4	4.0								
PL	60.44	[bar]										
p*L	56.30	[bar]										
р _Ү	14.08	[bar]	551	13.1			1					
E _{PMT}	543	[bar]	514	12.3	{12.3 -	13.1 %}						
E _{PMT} / p* _L	9.6				1							
E _{Unload 1}	2456	[bar]	566	13.5								
EReland 1	979	[bar]										
- Neload 1		[bar]	683	16.1								
E _{Unload 2}	3657											
E _{Unload 2} E _{Reload 2}	3657 1788	[bar]										
E _{Unload 2}	3657 1788	[bar]										

Pressuremeter Equipmer	nt: TEX	AM Model	Probe Designation :	NX Probe	e (76 mm OD)	Drilling Method: Drilling Bit:	Mud Rotary Drilling Tricone Bit	Test Date:	October 6, 2023	Project:	2343 Eglinton Ave. West. Toronto
Volume-controlled test as per	ASTM D	4719	Probe No.:	A 512		Time elapsed from hol	le drilling to testing				··· J ··· ·· · · · · · · · · · · · · · · ·
Method B			Calibration Record No.:	1		~ 5 minutes		Test Depth [m]	ac ac (center of the probe)	Client	CEM Services Inc.
Volume increments:	40	cm ³	Tubing Length:	180	[ft]	Engineer: Gabriel Se	edran, P.Eng., Ph.D.	rest Depth [m].	30.22	Client.	GEIM Services Inc.
Maximum Volume:	1400	cm ³	Probe Lenght:	0.46	[m]	Operator: Scott Andr	rew Hall			In Depth Costophnical Project No.	IDC 220740
Maximum Pressure:	100	bar	Probe Initial Volume:	1968	cm ³			Drilling Company:	Drill Tech Contractor	in-Depth Geolechnical Project No	IDG 230749

0.66291 0.02533 0.01259 0.00837 0.00627 0.00502 0.00418 0.00358 0.00314 0.00259 0.00251 0.00259 0.00251 0.00229 0.00229 0.00229 0.00210 0.00195 0.00181 0.00177 0.00174 0.00172

Appendix One - Page 9

Field Tes	st Data (unc	orrected)			Corrected	l Test data			Cr	еер	A	uxiliary Da
		,	15	second read	lings	30-:	second read	ings	Volume	∆ p 30-15		30 sec
Volume [cm ³]	15 sec	ure [bar] 30 sec	[bar]	Volume (cm ³)	∆r/r₀ [%]	[bar]	Volume (cm ³)	∆r/r₀ [%]	[cm ³]	[bar]	Press	ure 1
2	0.75	0.75	4.53	1	0.00	4.53	1	0.00	1	0.00	4.53	0.71
40	0.78	0.77	4.52	39.4	1.00	4.51	39.4	1.00	39.4	0.01	4.5	0.02
80	0.86	0.84	4.56	79.3	2.00	4.54	79.3	2.00	79.3	0.02	4.54	0.01
120	0.93	0.91	4.59	119.3	2.99	4.57	119.3	2.99	119.3	0.02	4.5	0.00
200	0.99	1.08	4.03	109.2	3.97 4 94	4.61	109.2	4 94	159.2	0.02	4.0	0.00
240	1.21	1.15	4.79	239.0	5.90	4.73	239.1	5.90	239.1	0.06	4.73	0.00
280	1.38	1.33	4.93	278.9	6.85	4.88	278.9	6.85	278.9	0.05	4.88	0.00
320	1.74	1.64	5.27	318.6	7.79	5.17	318.7	7.79	318.7	0.10	5.17	0.00
360	2.75	2.48	6.26	357.8	8.71	5.99	358.0	8.72	358.0	0.27	5.99	0.00
400	6.77	6.41	10.26	394.6	9.57	9.90	394.9	9.58	394.9	0.36	9.90	0.00
440	13.61	13.23	17.08	429.2	10.37	16.70	429.5	10.38	429.5	0.38	16.7	0.00
480	18.78	13.83	17.36	465.1	11.19	21.83	465.4	11.20	465.4	0.41	21.0	S 0.00
460	10.47	10.52	13.93	451.7	10.89	13.98	451.7	10.88			13.9	B 0.00
450	7.69	7.77	11.16	443.9	10.71	11.24	443.8	10.71	-		11.2	4 0.00
460	12.31	12.00	15.77	450.2	10.85	15.46	450.5	10.86			15.4	6 0.0
470	15.35	14.91	18.81	457.8	11.03	18.37	458.2	11.03			18.3	7 0.00
480	17.67	17.19	21.13	466.0	11.21	20.65	466.4	11.22			20.6	5 0.00
520	21.73	21.42	25.17	502.8	12.05	24.86	503.0	12.06	503.0	0.31	24.8	6 0.0
560	24.77	24.33	28.19	540.4 579.5	12.90	21.15	540.7	12.91	540.7	0.44	21.1	5 0.0
590	21.09	21.57	25.06	572.8	13.63	24.98	572.9	13.63	576.9	0.40	24.9	8 0.00
580	17.80	17.77	21.22	565.9	13.47	21.19	565.9	13.47		1	21.1	9 0.0
570	14.77	14.81	18.19	558.3	13.30	18.23	558.3	13.30			18.2	3 0.0
580	20.37	19.87	23.79	563.9	13.43	23.29	564.2	13.44			23.2	9 0.0
590	24.01	23.48	27.42	571.0	13.59	26.89	571.4	13.59			26.8	9 0.0
600	26.83	26.23	30.24	578.7	13.76	29.64	579.2	13.77			29.6	4 0.0
640	29.60	28.95	33.00	616.5	14.60	32.35	617.1	14.61	617.1	0.65	32.3	5 0.0
680	31.80	31.11	35.19	654.8	15.45	34.50	655.3	15.46	655.3	0.69	34.5	0.00
720	33.47	34.22	38.24	732.4	17.14	37.50	732.0	17.15	732.0	0.67	30.1	9 0.0
800	36.09	35.46	39.45	771.4	17.98	38.82	771.9	17.99	732.9	0.63	38.8	2 0.0
000	00.00		00.10			00.02				0.00		
									_			
			-						-			
												-
			-									
	I	1	_!	I	I	J	l		!		<u> </u>	
	Inte	rprotod	DMT To		ute		I					
10			volume	radial	sti	ain						
ĮSI	u-second rea	laingsj	[cm ³]	[%]	["	%]						
p ₀	4.56	[bar]	119.3	3.0	l							
pL	56.02	[bar]			l							
		[bar]										
p*L	51.46				1							
p*L PY	51.46 16.70	[bar]	430	10.4								
p*L Py E _{PMT}	51.46 16.70 1245	[bar] [bar]	430 395	10.4 9.6	{9.6 -	10.4 %}						
р*L Р _Y Е _{РМТ}	51.46 16.70 1245 24.2	[bar] [bar]	430 395	10.4 9.6	{9.6 - ·	10.4 %}						
P*L PY E _{PMT} E _{PMT} / P*L E _{Unload 1}	51.46 16.70 1245 24.2 3159	[bar] [bar] [bar]	430 395 444	10.4 9.6 10.7	{9.6 - ·	10.4 %}						
P*L Py E _{PMT} E _{PMT} / P*L E _{Unload 1} E _{Reload 1}	51.46 16.70 1245 24.2 3159 2087	[bar] [bar] [bar] [bar]	430 395 444	10.4 9.6 10.7	{9.6 - `	10.4 %}						
P*L PY E _{PMT} E _{PMT} / P*L E _{Unload 1} E _{Unload 2}	51.46 16.70 1245 24.2 3159 2087 3852	[bar] [bar] [bar] [bar] [bar]	430 395 444 558	10.4 9.6 10.7 13.3	{9.6 - [.]	10.4 %}						
P*L Py E _{PMT} E _{Unload 1} E _{Reload 1} E _{Unload 2}	51.46 16.70 1245 24.2 3159 2087 3852 3035	[bar] [bar] [bar] [bar] [bar] [bar]	430 395 444 558	10.4 9.6 10.7 13.3	{9.6 - ·	10.4 %}						
p*L Py EPMT EDMT / P*L EUnicad 1 EReload 1 EUnicad 2	51.46 16.70 1245 24.2 3159 2087 3852 3035	[bar] [bar] [bar] [bar] [bar] [bar]	430 395 444 558	10.4 9.6 10.7 13.3	{9.6 - `	10.4 %}						
P*L Pv E _{PMT} E _{PMT} /P*L E _{Unload 1} E _{Reload 1} E _{Reload 2}	51.46 16.70 1245 24.2 3159 2087 3852 3035	[bar] [bar] [bar] [bar] [bar]	430 395 444 558	10.4 9.6 10.7 13.3	{9.6 - ·	10.4 %}						

Determination of total contact pressure p		Determination	of	total	contact	pressure	p ₀
---	--	---------------	----	-------	---------	----------	----------------

Pressuremeter Equipn	nent: TEX	AM Model	Probe Designation :	NX Prob	e (76 mm OD)	Drilling Method: Drilling Bit:	Mud Rotary Drilling Tricone Bit	Test Date:	October 6, 2023	Project:	2343 Eglinton Ave. West, Toront
Volume-controlled test as	per ASTM D	4719	Probe No.:	A 512		Time elapsed from ho	ble drilling to testing			-	0
Method B			Calibration Record No.:	1		~ 5 minutes		Teet Depth [m]:	20.27 (center of the probe)	Client	CEM Services Inc
Volume increments:	40	CM3	Tubing Length:	180	[ft]	Engineer: Gabriel Se	edran, P.Eng., Ph.D.	rest Depth [m].	39.27	Client.	GEINI Services Inc.
Maximum Volume:	1400	Cm ³	Probe Lenght:	0.46	[m]	Operator: Scott And	Irew Hall			In Depth Castashniad Draiget No.	IDC 220740
Maximum Pressure:	100	bar	Probe Initial Volume:	1968	cm ³			Drilling Company:	Drill Tech Contractor	In-Depth Geolechnical Project No	IDG 230749

0.71152 0.02539 0.01260 0.00838 0.00628 0.00502 0.00418 0.00354 0.00354 0.00354 0.00279 0.00253 0.00225 0.00221 0.00221 0.00222 0.00222 0.00222 0.00228

Appendix One - Page 10

Appendix Two

Pressuremeter Data Interpretation

Interpretation of Pressuremeter Test Results

Prebored pressuremeter test results are expressed in terms of applied pressure versus radial strain. Both pressure and strain measurements must be corrected for pressure and volume loses using the corresponding probe and system calibration curves.

The typical pressure versus radial strain curve features up to four distinctive portions which characterize the stress-strain behaviour of the soil, namely:

- a) The linear pseudo-elastic stress-strain portion of the deformation curve;
- b) The departure from linear elastic conditions starting at the yield pressure p_y ;
- c) The unload-reload portion of the test (usually two cycles are performed); and
- d) The development of soil failure, which is represented by the net limit pressure p^*_L .

Based on these test features the following soil parameters are determined or estimated:

1. **Contact Pressure** *p*_o:

When using the prebored TEXAM unit, the initial contact pressure is taken as the pressure at the intersection of the two lines representing the pseudo elastic and the initial expansion portions of the pressure vs. 1/V plot, as shown in the PMT data sheets, in Appendix One.

2. **Pressuremeter modulus** *E*_{PMT}:

The pressuremeter modulus is represented by the slope of the pressure versus radial strain curve along its linear portion, and may be calculated as follows:

$$E_{PMT} = (1+\upsilon)(p_2 - p_1) \frac{\left(1 + \left(\frac{\Delta R}{R_o}\right)_2\right)^2 + \left(1 + \left(\frac{\Delta R}{R_o}\right)_1\right)^2}{\left(1 + \left(\frac{\Delta R}{R_o}\right)_2\right)^2 - \left(1 + \left(\frac{\Delta R}{R_o}\right)_1\right)^2}$$

where the sub-indices 1 and 2 indicate the beginning and the end of the linear portion of the curve, respectively. These two points are shown in pressuremeter curves with two red oversized circles. For the self-boring probe, the linear portion of the stress-strain response occurs between the very first data point (zero volume increase) and the subsequent two or three data points.

In this determination a value of the Poisson's ratio, typically v = 0.33 for most soils, must be assumed. For saturated clays a value of v = 0.45 is suggested.

3. Yield Pressure p_y :

The yield pressure indicates the end of the linear pseudo-elastic deformations and the onset of plasticity. This yield pressure is useful in indicating beyond which pressure significant creep deformations may occur.

4. Unload-Reload Moduli E_{Unload} and E_{Reload}

The unload and reload moduli are represented by the slope of the unload-reload loop, and they may be used to determine elastic soil deformations upon unloading or reloading conditions such as those typically encountered during excavations.

5. Net Limit Pressure p_{L}^{*} :

The net limit pressure is a measure of the strength of the soil (either under undrained conditions for cohesive soils, or drained conditions for non-cohesive soils). This parameter is defined as the pressure reached when the soil cavity has been extended to twice its original soil cavity volume V_c (minus the initial total contact pressure p_o).

The limit pressure is not always attained during testing. In such cases, the value of p_L is inferred by plotting pressure versus 1/V for the plastic phase of the deformations. This method of inferring p_L , known as the "upside down curve" method, is described in "*The Pressuremeter and Foundation Engineering*" textbook, by F. Baguelin, J.F. Jezequel, and D.H. Shields, published in 1978 by Trans Tech Publications, Section: Methods of extrapolating pressuremeter curves to p_L . See also ASTM D4719-00, Section 10.6.

It should be noted that radial strains are calculated from the volume of fluid (typically tap water) injected into the probe. In this regard, the radial strains shown in the results are related to the probe expansion, not the cavity's expansion. The cavity initial volume, V_c , is calculate by adding the probe initial volume, V_0 , to the volume of water injected into the probe at the initial contact pressure p_0 .

6. Some Additional PMT-based Parameters

In addition, two useful ratios, (E_{PMT}/p^*L) and (p^*L/p_y) , may be used as a general guideline for soil identification, as follows:

for sands $7 < E_{PMT}/p^*_L < 12$

for clays $12 < E_{PMT}/p_L^*$

Many PMT tests completed in the glacial tills present in the geology of the Golden Shoe area (Ontario) registered much higher values than those listed above. In many cases, values for E_{PMT}/p_{L}^{*} in excess of 30 have been recorded.

The E_{PMT} / p_L^* value is known as the *mechanical ratio*, and it indicates whether a soil mass behaves in a ductile (high value) or brittle (low value) manner after yield stresses have been reached. This ration It is the PMT equivalent of the soil mechanic's Rigidity Index, e.g., G/σ_{max} .

Inferred Soil Parameters

7. Young's Modulus E_Y

The Pressuremeter modulus E_{PMT} corresponds to large strains, namely for radial strains in the 2 to 5 % range, and it is therefore considered to be a relatively low value of the elastic modulus. In practice, the Young's modulus *E* can be inferred from Pressuremeter testing using the empirical Menard α factor:

$E_Y = E_{PMT} / \alpha$

Typical values of the Menard α factor are suggested in the following Table:

	Peat		Cla	y	Silt		San	d	Sand and	i gravel	
Soil type	E/p_L^*	α	E/p_L^{\bullet}	α	E/p_L^*	α	E/p_L^*	α	E/p_L^*	α	
Over consolidated		1	> 16	1	> 14	2/3	> 12	1/2	> 10	1/3	
Normally consolidated	For all values	1	9-16	2/3	8-14	1/2	7-12	1/3	6-10	1/4	
Weathered and/or remoulded		1	7-9	1/2		1/2		1/3		1/4	
Rock	Extre	emely		Other					Slightly fractured or extremely weathered		
	α=	: 1/3			$\alpha = 1$	/2			$\alpha = 2/3$	3	

(from 'The Pressuremeter', J.L. Briaud. Balkema, 1992)

Alternatively, better-defined values of the Menard α parameter can be obtained using the following expression, as introduced by J.P. Baud

$$\alpha = \frac{\left(\frac{E_{PMT}}{P_L^*}\right)^{1/n}}{k_E \left(\frac{P_L^*}{p_0}\right)^{m/n}}$$

With n = 2; m = 0.5; and $k_E = 3.5$.

This expression is based on empirical correlations and may also be visualized in the Pressiorama Chart illustrated in the next page:

Baud J.P., and Gambin M. 2013. "Détermination du coefficient rhéologique α de Ménard dans le diagramme *Pressiorama*". Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, 2013, Parallel Session ISP 6, International Symposium on the Pressuremeter.

8. Undrained Shear Strength for Cohesive Soil Materials

The undrained shear strength of cohesive soils, c_u or S_u , may be estimated as:

$$c_u = \frac{P'_L}{\beta}$$

where P'_L is the net Limit Pressurea, and a value of $\beta = 6.5$ is used in this report, after J.L. Briaud ('The Pressuremeter', Balkema, 1992).

9. Drained Friction Angle for Cohesionless Soil Materials

The drained friction angle of cohesionless soils (for c' = 0) may be estimated using the empirical correlations illustrated in the graph shown below. This approach is outlined by Baguelin et.al., in *"The Pressuremeter and Foundation Engineering"* (F. Baguelin; J.F. Jézéquel; and D.H. Shields. TransTech Publications. 1978), and it requires some knowledge on the state or conditions of the cohesionless material. This approach only provides a likely range of friction angles for recorded values of the limit pressure.

Also alternatively, values of the drained friction angle ϕ' can be inferred using the modified Pressiorama Chart (*Pressiorama Cyclique, in French*) as introduced by Baud.

Figure 3. Diagramme Pressiorama[®] cyclique [$ln(E_{c1}/E_M | ln(p^*_{LM}/p_0)$].

The values of ϕ ' plotted in the modified Pressionama Chart are calculated with the following expression:

$$\phi' = 5.5 \ln \left(\frac{9}{\alpha^2} \ \frac{P_L^*}{p_0}\right)$$

with values of α calculated/inferred from the modified Pressiorama Chart.

Where this expression provides values of effective friction angle greater than a 45° , a maximum value of 45° should be assumed.

This expression was presented by J.P. Baud, in his publication "Apport de L'Essai Cyclique a la Classification Pressiométrique des Sols et des Roches", Journées Nationales de Geotechnique et de Géologie de l'Ingénieur, Nancy, 2016.

Shear strength parameters suggested in Table No. 3, are based on the guidelines provided by the *Pressiorama* and *Cyclique Pressiorama* charts. It should be noted that these guidelines are subject to changes, or improvements, as the correlations between pressuremeter parameters E_M , p'_L , and p_0 are being adjusted by ever increasing amount of field data. As such, care should be used when using these suggested parameters.

10. Soil Classification Index

Based on PMT testing procedures, soil behavior may be characterized as cohesive or frictional (cohesionless). Using the modified Pressiorama Chart, a Soil Classification Index, namely I_c , can be inferred with the following expression:

$$I_{c} = \left[\left(1 + \log \left(\frac{P_{L}^{*}}{p_{0}} \right) \right)^{2} + \left(1 - \log(\alpha) \right)^{2} \right]^{\frac{1}{2}}$$

A minimum value of 1 would correspond to a cohesive soil, near its state of liquefaction. Whereas, a value of 4.5 would correspond to coarse gravel materials. A value of $I_c = 2.7$ would apply to a material which behaves mechanically as part frictional (drained for long-term loading conditions) and part cohesive (undrained for the short-term loading conditions). In general, Soil Type Behaviors corresponding to values of the Classification Index I_c are listed as:

Clays
Clay-Silt mixes
Silts
Sands
Gravels, and
Weathered Rocks

Appendix Three

Calibration Data

Calibration Date:September 28, 2023Probe Designation:A 512Calibration Record No.:ILength of Tubing:180Calibrated by:S.H.

Geo

Membrane stiffness calibration

-	
Pressure	Volume
[bar]	cm ³
0.12	0
0.22	100
0.29	200
0.36	300
0.41	400
0.45	500
0.49	600
0.51	700
0.54	800
0.57	900
0.58	1000
0.59	1100
0.60	1200
0.60	1300
0.61	1400
0.62	1500
0.62	1600

Membrane Stiffness (Air Calibration) 0.70 0.60 0.50 **Bressure** [bar] 0.40 0.20 0.10 0.00 1400 0 400 600 800 1000 1200 1600 200 Volume [cm3]

System Stiffness (Compliance Calibration)

Volume calibration

.

Pressure	Volume
[bar]	cm ³
0	0.0
5	339.4
10	360.6
15	373.3
20	380.0
25	385.2
30	390.2
35	394.6
40	398.4
45	402.0
50	405.4
60	411.9
Reload	Cal. Data
25	384.8
50	405.9

